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1. Introduction

Twistor [} string theory [f studies perturbative scattering amplitudes of massless particles
in N = 4 Super-Yang-Mills theory in terms of a topological B-model with target space
CP3. This target space is a Calabi-Yau supermanifold B (For alternative formulations
of twistor string theory see [B][[][].) Twistor techniques are, in general, useful for dealing
with massless particles. They have recently been used to derive simple expressions for
scattering amplitudes that have previously never been written in closed form. (See [f] for

a recent review.)



In this paper we would like to describe a theoretical extension of twistor string theory
that includes a mass term for the fermions of the vector multiplet of Super-Yang-Mills
theory. Such a mass term, of course, breaks supersymmetry and conformal invariance as
well. In general, a mass term precludes the use of the twistor transform which requires
that external particles have lightlike momenta. (But see [[(] for recent developments that
use twistor techniques indirectly to calculate scattering amplitudes of massive particles.)
However, if the mass term only involves spinors of one chirality and does not include
the spinors of the opposite chirality, the plane-wave solutions of the free Dirac equation
are still lightlike. Of course, such a model breaks CPT symmetry, but it is consistent
mathematically, and we can calculate scattering amplitudes in this model. The amplitudes
are holomorphic functions of the chiral mass parameters.

The physical relevance of the scattering amplitudes that we get in such a model can be
described as follows. The scattering amplitudes of a model with a CPT-invariant fermion
mass term depend on the complex mass parameter M and its complex conjugate M*. It
can be written as an analytic expression in two formally independent variables M and M*.
The amplitudes of the chiral-mass theory can be defined as the expressions that we get
when we formally set M* = 0 in the physical amplitudes.

In this work we study the twistor approach to N = 4 Super-Yang-Mills theory with an
extra chiral mass term, and we expand on ideas presented in [[I. There, it was argued that
the free-field equations of motion of the augmented theory still have a twistor description;
the relevant twistor space is a certain super complex structure deformation of CP34. In
this paper we calculate 4-particle scattering amplitudes and extend the notion of mazimally
helicity violating (MHV) amplitudes to include the chiral mass term. In the massless the-
ory, Witten discovered that MHV scattering amplitudes vanish, when expressed in twistor
variables, unless certain algebraic conditions hold. The amplitude does not vanish only if
there exists an algebraic curve of degree d = 1 in supertwistor space, CP34, such that all
the twistors that label the external particles lie on this curve . Does a similar assertion
hold for the theory with the chiral mass term?

In this paper we will explore this question for 4-particle amplitudes. In section § we
extend the definition of helicity to the fermions with a chiral mass term, and we calculate
4-particle (extended) MHV scattering amplitudes. In addition to the chiral mass term,
we also include in the calculations a possible 3-scalar interaction, which has the same
dimension (A = 3) and R-symmetry quantum numbers as the fermion mass term. In
section ]l we describe the deformation of super twistor space that corresponds to adding
the chiral mass term, and we look for algebraic curves in the deformed space. There, we
define a natural extension of the notion of degree d = 1 curves for the deformed case; the
equations describing these curves contain quadratic terms. In section | we show that if
we set the 3-scalar coupling correctly, 4-particle (extended) MHV amplitudes are indeed
supported on these d = 1 algebraic curves. Furthermore, we find that the amplitudes are
given by an integral over the moduli space of d = 1 curves that is essentially the same as
the one for the massless case [[J]; the only modification is the expression for the curve itself.
We conclude with a discussion in section [. The appendices contain more technical details
about the Feynman rules in the presence of the unusual CPT-violating chiral mass terms.



2. Chiral and anti-chiral fermion mass terms

We denote the negative helicity fermions by 42, where a is a spinor index (a = 1,2)
and A is an SU(4) R-symmetry index (A = 1,...,4). We denote the positive helicity
fermions by Ei The full N = 4 Super Yang-Mills Lagrangian is presented in appendix [B),
for completeness. An anti-chiral mass term is M ABw&“wO‘B and a chiral mass term is
M AB@@ AE%. Here Map = Mpa and MAE = MBA are the corresponding mass matrices,
with 10 independent complex parameters each. We are going to add a chiral mass term to
the N =4 SYM Lagrangian. This, of course, breaks CPT invariance, but the perturbative
Feynman diagrams are well-defined.

2.1 Free field equations of motion

In the presence of a chiral mass term, the negative helicity fermions acquire a left-chirality
(&) component. To see this, we write down the Dirac equations:

Pac®a =0,  poyd = MABYY,. (2.1)

These equations imply that the momentum pgg is lightlike. It can therefore be written as
a product of two spinors,

Pac = AaAas (22)
as in the MA4B = 0 case. A basis for the solutions of (R.1) is given by

d ~

P =2, 2 =0t + MAPy, 05, (2.3)

where g4, 0 are arbitrary parameters (scalars in the fundamental representation of the
R-symmetry group) and n® is an arbitrary chiral spinor that is only required to satisfy

2\, = 1. (2.4)

Once 7, is fixed, we can define helicity as follows: A solution with helicity (—) has Py =0
and ¥4 = A\*p4; a solution with helicity (+) has ¢y = A%04 and *4 = MABp2gp.!
In Feynman diagrams, external lines of negative helicity fermions only have left-moving
»*4 components, but external lines of positive helicity fermions have both left-moving and
right-moving components. This is depicted in figure f] and figure B

2.2 3-scalar interaction

The fermion mass term that we added in section R.]] is a linear combination of operators
—  —a
Vipg=tr{¥sa¥p} (2.5)

of conformal dimension A = 3, at lowest order in perturbation theory. These operators
are in the SU(4) (R-symmetry) irreducible representation 10 (i.e., a symmetric covariant
2-tensor). There is another set of operators of N = 4 super Yang-Mills with the same

'If we treat o, 9 and 7 as continuous functions of A and 5\, the helicity can be alternatively defined as

(B.1(). These two definitions turn out to be equivalent, as discussed in appendix @



quantum numbers, at lowest order in perturbation theory. They are cubic in the scalar
fields. Let us denote these scalar fields by

o1, I=1,...,6. (2.6)

Here 7 is an R-symmetry index in the fundamental representation of so(6) ~ su(4). (For
convenience, we present some relevant identities in appendix [A.3.)

Oth

The second set of operators of conformal dimension A = 3 (at order of perturbation

theory) and so(6) ~ su(4) representation 10 can now be written as

i =ThL we{oros0x}, (2.7)

using the SU(4)-invariant symbol Fi‘é’c, defined at the end of appendix [A.. This symbol
is anti-symmetric in the so(6) indices ZJK and symmetric in the su(4) indices AB, and
it connects the representation 10 of so(6) (self-dual 3-tensors) to the representation 10 of
su(4).

There is a linear combination of V', 5 and V'} 5 that lies in a short supermultiplet. This
is the combination

1
VAB::VAB + ZVZB, (28)

and its conformal dimension A = 3 is exact. These operators can be obtained by acting
with two supersymmetry transformations on the chiral primary operators Vz7:=tr{¢z7}.
(See [LI[I2 for more details.)

In the next section we will calculate 4-point tree level scattering amplitudes in the
presence of the perturbations discussed above. We will include both the 2-fermion and the
3-scalar perturbations in the combination

1
g2oL = §MABVAB, (2.9)

where ¢ is the Yang-Mills coupling constant and the unperturbed Lagrangian is presented
in (B.1).

In [13] it was shown that twistor string theory contains a sector that is described by
N = 4 conformal supergravity (CSUGRA). Furthermore, tree-level amplitudes in CSUGRA
have been calculated in [[4] using twistor string theory. The fields of CSUGRA couple to
the fields of N = 4 Super Yang-Mills (SYM). To linear order, each CSUGRA field couples
to an N =4 SYM operator from the short supermultiplet of the chiral primary field Vz 7.
For example, CSUGRA contains an SU(4) gauge field that couples to the R-symmetry
current of N = 4 SYM. CSUGRA also contain scalar fields in the representation 10 of
SU(4), which were denoted by EY in [L3]. To linear order, these fields couple to the
N = 4 SYM operators Vap, and the mass terms that we are considering here can be
interpreted as VEVs,

MAB <EAB > , (2.10)

as suggested in [fl].



3. Extended MHYV amplitudes

In this section we will calculate several scattering amplitudes with a chiral mass term for
tree-level planar diagrams. The mass term mainly changes the Feynman diagram rules for
the fermions and 3-scalar interaction. We present the fermion propagators and external
wavefunctions in figure fll - figure ], and the 3-scalar vertex in figure []. All the relevant
Feynman rules are given in appendix [B:

When we label the helicity of the amplitude, we use the convention that all exter-
nal particles are incoming. For example A(+41,+1, —1,—1) represents the amplitude with
two incoming helicity +1 and two incoming helicity —1 gluons. On the other hand, for
convenience, the convention depicted in the figures (and discussed in appendix [B]) will
be that the helicity and momentum are all physical (2 incoming and 2 outgoing parti-

cles with their physical momenta and helicities).?

For the planar diagrams with external
particle indices ¢ cyclically attached, all amplitudes include an overall group theory factor

tr[IyTy---T; - - - T,], which will be suppressed hereafter.

Maximally Helicity Violating (MHV) amplitudes at the tree level are originally de-
fined [[F-[l7 as those satisfying the condition >, (2h; — 2) = —8 with h; the helicities
of external legs (defined as all incoming). Since the chiral mass term is interpreted as a
VEV of a spacetime conformal supergravity field POl (see (R.10))) we can think of the am-
plitudes with n external legs that contain the mass parameter at order O(M*) as coming
from diagrams with (n + k) legs, of which k legs correspond to a background CSUGRA
field E*?. The helicity of this field is 0, and therefore mass-deformed SYM diagrams
at order O(MF) that satisfy >_.(2h; — 2) = —8 + 2k correpond to MHV diagrams in
CSUGRA. We can therefore generalize the term “MHV” to “extended MHYV” to describe
those diagrams at order O(MP¥) that satisfy >,(2h; — 2) = —8 + 2k.> The holomorphic
structure of generalized MHV amplitudes calculated in this section will be discussed in
section .

We will now present the results of the calculation of various (extended) MHV ampli-
tudes. The Feynman diagrams and the detailed calculation are shown in appendix [ for
interested readers. We begin with M“4B-independent contribution to the MHV amplitudes.
These diagrams are the same as those of the undeformed theory, and were calculated in
[[31[{] with external gluons and in [[§[[9] with external gluinos. We present them here for
completeness, featuring the use of the spinor notation.

2This difference in conventions corresponds to replacing p* — —p*, or A — i\ and X — i\ for the
outgoing particles. This does not affect our result because we scale (Ai1, Ai2) to (1, Z; = Ai2/As1) in the end.
However, the form of the momentum conservation condition depends on the convention: pi+---+ps = 0 for

“incoming” momenta while p1 + p2 = ps + p4 for “physical” momenta. The former leads to % = —%,
% = ——éiﬁ’; and so on, while the latter gives % = —% and % = % (an extra minus sign may
arise).

3 At tree level, however, we only have O(M°) and O(M); the amplitudes at higher orders of M all vanish.
This can be understood by @), in which M gives 3 62’s but the integrand needs to have exactly 4 2 to
yield nonzero result.



3.1 MHV amplitudes (extended MHV at O(M"))

e 4-gluon scattering amplitude:*

Aoy (+1,+1, -1, —1) = ig? _ (3,4)° (3.1)
0 , —1) = —_— .
o 2 My fii+ 1)
e 2-gluon and 2-fermion scattering amplitude:
9 A 4)°(1,3)
A 1911, 1/2) = i, DA L3 3.2
ooy (+1/ /2) 9Q4QlAH i) (3.2)

e 4-fermion scattering amplitude:

AO(MO)(+1/2,+1/2,—1/2,—1/2)
_ 2’ B4 [ a g A~ ~ p
= m{& 01A02B03 <173><2,4> + 03 01402804 (273><47 1>}7 (3-3)

e 2-fermion and 2-scalar scattering amplitude:

2ig%(3,4)(2,4) (1 ,_ ~
= M{ 01014905 p3p0(1,2)(3,4) + QfQIASDgASDBBC<2,3><4’1>}a

H?:l <Z7Z + 1> 2
(3.4)
where 9 and @3 are wavefunctions for the external scalars.
3.2 Extended MHYV amplitudes at O(M)
e 2-gluon and 2-fermion scattering amplitude:
 2arTABS
g M 01A04B <3, 1><3’ 4> <4’ 1>
Aoy (+1/2,+1,-1,41/2) = . (3.5)
o 2 [T i+ )
e 4-fermion scattering amplitude:
Aoy (+1/2,+1/2,-1/2,41/2)
G M G B (L2 (2,33, )
Hl(% v+ 1>
+01405 028 MPP 54 (2,4)(2,3)(3,4) + 02p0o¥ 14 M Q4D(4,1>(1,3>(3,4>}-
(3.6)

“The notations (i, ) and [i, 5] are short for (A, \;) and [A;, A;] respectively. We also set A1 = A1 for
n external legs.



e 2-fermion and 2-scalar scattering amplitude:
Ao (+1/2,0,0,+1/2)

'92

Z 1 2,3)(3,4)(4,2)0. B ~
W ‘|‘>{< ’ >< ’ >< ’ >Q4CMC SDBBDQDDQAQIA
'i 1 )

+(1,2)(2,3)(3, 1) aup PP 0ap a ML 51 p

S (1,2)2,3)(3,4) + (1L2){L 43, 4) BsM BiceE P oapr ). (37)

4. Chiral B-model mass terms

We now compare the amplitudes calculated in section [ with an integral over the moduli
space of holomorphic curves in twistor space. Let us begin by reviewing some facts about
super twistor space [J]. We denote the homogeneous coordinates of the B-model target
space CP3l4\ CP!1* by

Z1 :)\1, ZQZ)\Q, Z;»,:,ui, Z4:M2, @1,...,@4.

It is convenient to define the two patches

U:={Z' #0}; U'={Z? #0}. (4.1)
On the patch U, the set
Zs Z3 Z, 4 64
Ji=——, Xi=—, Yi=— Jh=—0o
Z Zy’ Z Z’

is a good coordinate system. On U’,

7Z 1 Zs X Zi Y o4 1
Z,Z:—l = —, /3:—3 = -5, ,::_4 = ) /A:: = _\I]A? (42)
Zy 7 A Zy 7 Zys 7

is a good coordinate system.

Given a meromorphic function

AXY, 2,00 0 = A4 0y, + 504050,
+1eapepUATPOORL + LeapcpTUPTCTPE,  (4.3)

where A, x4, 048, X", G are holomorphic functions of X, Y, Z with possible poles at Z = 0
and Z = oo, we can construct an on-shell wave-function of the N = 4 fermion fields by
(see appendix of [{]),

1
VA (z) = - ji)\a)ZA(xli + 29i2, 15 + Tos2, 2)d2, M=1, M=z

2mi (4.4)

—é 1 0
Palz) = i jéc %XA@H 2912, 215 + T2, 2)dz.

The contour integrals are performed on, say, a circle around the origin. There are also
similar expressions for the bosons A, ¢ a5, G.



We have a lot of freedom in choosing the holomorphic functions ¥4 and x4, and it
is only their singular behavior at z = 0 and z = oo that is important, as we will now
review. We can deform the path C of the contour integrals (.4) to a small loop around
the origin z = 0. This shows that these integrals are only sensitive to the singular behavior
of ¥4 and x4 at Z = 0. Adding to Y or x4 a holomorphic function of X,Y, Z that is
nonsingular for all Z # oo will not affect the physical wave-functions. Similarly, we can
perform the integrals ([L.4)) in the coordinate system X’,Y”, Z’. In these coordinates we set
the superfield A’ to

AX Y, 720U = AX,Y, 2,0 o,
The components of this field are
A = A+ 0N 4 20 P+ Leapop W 0 PO 4 Lespop v P et
Thus, the transformation rules for the fermionic components are

1, X Y 1 1 XY 1

A AR Va7 ! ARV
X (X,Y7Z)=ﬁx (g ) xaXLYL 20 = Zxalo7, -5 ).
In these variables, the contour integrals (f.4) can be written as
aA _ 1 )\/a 1 ~1A / / Ndz' )\/1 o )\/2 =1
P (:c)——% g BX (112 4+ Toi, 132 + T95,2")d2, =z, =1,
—a 1 1 0
Va(r) = "o b 2 Orra Xa(@132" 4 @gq, 152" + 245, 2')d2’
«
o 1 0 ’ ’ ’ Ndz'
=5 C—adeA(mnz + Zoi, X157 + X9y, 2 )d2 .
(4.5)

We require that the fields Y4 (X', Y, Z’) and x; (X', Y’, Z") be holomorphic in X', Y, Z' for
all finite X', Y’ and all nonzero and finite Z’. But we allow singularities at Z’ = 0. In fact,
similarly to the case of (f.4), the contour integrals are only sensitive to the singular behavior
of the fields at Z’ = 0. Thus, adding to A’ a holomorphic function of X', Y’, Z/ 't ... w'*
that is nonsingular at Z’ = 0 will not affect the physical wavefunctions.

To summarize, there is a freedom in the choice of A,

AX,Y, Z,0) ~ AX,Y, Z,¥) + Ap(X,Y, Z,¥) + A (X, Y, Z,¥), (4.6)

where Ap is an arbitrary meromorphic wavefunction that is holomorphic at Z # oo (in-
cluding Z = 0), and A is an arbitrary meromorphic wavefunction that is holomorphic at
Z # 0 (including Z = o00). To check the holomorphicity requirement for A, one has to
know what the good coordinates near Z = oo are. In the undeformed case, these are given
by (2.

In the next subsection we will reverse this logic and find a deformation of the complex
structure that corresponds to a chiral mass term. The idea is as follows. First we find
a solution to the Dirac equation (R.1) in a form that augments (f£4). It will be given in



terms of meromorphic functions on twistor space that we will denote again by ¥* and y 4.
Then, we define a superfield similarly to ([£.3), and we look for an equivalence in the form
({4). Since (f4) will be augmented, invariance of the physical wavefunctions 4 and Ei
under ([£.6) will require a different definition of “holomorphic at Z = 00.” This will yield an
augmentation of the transition functions ([£2), which will give us the desired deformation
of the complex structure. Let’s move on to the details!

4.1 Super-complex structure deformation

As explained in [, a chiral mass term can be incorporated into the B-model twistor
string theory as a certain supercomplex structure deformation. General deformations of
the complex structure of weighted projective superspaces (and other holomorphic vector
bundles) were studied in [R0]-[23].

A supercomplex structure deformation can be described by changing the transition
functions ([[.). The new transition functions that we need turned out to be

7' = % X' = % Y = g o'l = E\IIA + @M BepeppPCUPOE. (4.7)
Let us recall how this deformation was derived in [l. We start with the free-field Dirac
equations (R.J]). The generic solution was given in (R.3). There, g4 and o4 are both
functions of A and ), but we can Fourier transform them with respect to A to obtain
functions of twistor space that we denote by x4 and Y. We can then write the solution

to the Dirac equation (R.I]) as

1 .
Vi(x) = %fc[/\axA(Z,$11+$212,$12+$222) + MABnoxp(2, 3,1 + 3912, 715 +7952) | dz,

Py(z) = 27”}4 8meA(Z s Ty Xaiz, Tyy + Te2)dz,
(4.8)

where

W) =(12),  (mym) = (1,0).

[Equations ([F-§) can be compared to ([F-4) in the massless case.] We can collect x4 and ¥*
in a superfield as m(@) Let us see what would be the analog of the equivalence relation
(4). Obviously, % and a4 in (.§) do not change if we add an arbitrary holomorphic
function at z # oo to either Y or x4 or both. Thus, the equivalence A ~ A + Ay is the
same as in the massless case ([.6).
Things change, however, for Ay in (f.6). The coordinates X', Y’, Z’ from ([L.2) are no
longer good coordinates near Z = oco. If they were, we could define
1 1 XY

X;X(Z7 X7 Y) = -XA

L Y, 1 1 XY
VA AN AN

NNA(ZXY) Z3 (Z z’ Z)

(4.9)

(we use "4 because it is only a temporary expression and we will modify it below) to
change, and we could write the integrals in ({.§) as follows. We could substitute ([£g) in

,10,



the second equation of (f.§) to get

1 1 0 1 x4 mli
el b Y N\d
¢A( )= i 7{) z@xlaXA(z + Tyi, + T45)dz

(4.10)

— 271_2?4 0x2aXA(Z xnz +x21,x12z + 295)dz !

This last integrand is regular near z’ = 0 and therefore vanishes if x 4 is holomorphic near
2/ =0, as in the massless case. However, there would be a problem with the integrand for
¥ Substituting (f9) in the first equation of ({.§), we would get

1 1 1 x T4
A ~INA 1i 12
Vo (r) = i C[)\a;X <; — T Ty, —1—9022) +
1 z; L5
AB 1i 12
—i—;M NaXp <;’_z —i—mzi,—z +x22>]dz
1

= 5 Aa?' I/A(Z/’xlizl + 5521’33122/ + Tg3) +
2m Jo

1
+;MABT]@X/B(Z/7 277 + xoi, w2 + xQQ)} dz (4.11)

If Y4 is regular at 2’ = oo, the first term in the integrand is regular, because for @ = 2 we
have A\, = 1 and for @ = 1 we have A\, = —z = —1/2’. However, the second term may have
a pole for & = 1 because 71 = 1. The integrand of (.11 therefore does not necessarily
vanish. This shows that ([.9) is incompatible with (f.f). We can fix this problem by a
slight modification of ([.g). We define instead,

1 1 XY

777
1 1 X v\ 1 1 XY
~1A AB
S — 2 2. 4.12
X2, XY) = 75X (Z 7z Z> 72M XA(Z’Z’Z) (4.12)

This can be inverted to

1 1 XY
ZXY) = =y [=, 2. =
XA( s <y ) ZXA<Z7Z’Z>7
A

1 1 XY 1 1 XY
» . AB
Z,X)Y) = — -, =, = —M —, =, = . 4.13
X( s y ) Z3X (Z’Z’Z>+Z2 XA(Z’Z’Z> ( )
Then
1 1 1 =z
A ~1A
a(ﬂf)_z_mj{[ Z_3X, (Z’L+ 2 2+ L)
1 1 x Tqs
+ =MAB (o + )\ )XB(_ _1+ Lo —2 —|—;c22)]dz
z z o
1 (4.14)
A
=~ P P WA 2132 + wg, 2152 + 299)

1
+ MAB(?na + Xa)XB(Z @117 + Toj, 1157 + 205) | d2

— 11 —



Now the integrand is regular at 2’ = co because

ZHOO Z*?OO

1,771+)\1 — 0, 1,7724-)\2 — L
Thus, the field redefinition (f.19) is compatible with the equivalence relation ([.6)). These
redefinitions (4.12)) are the ¥ and YWV components of the superfield expression

A(X Y 7 WY = AX,Y, 2,04,
where the coordinates X', Y”, Z', ¥'# are defined in ([£7).

4.2 A note on the anti-chiral mass term

One might wonder whether we could derive a similar modification of the complex structure
of super twistor space for the anti-chiral mass term deformation M4/, In this case,
instead of the Dirac equations (R.I]) we get

Paatn = MapyB, Pac ™ =

Instead of (), the solution is now given by

1
A <A
Vo (T) = %j{c)\aX (2,214 + g2, 715 + Tp52)]dz,
1 0
sz() 5 g axl.XA(z,xn—i—inz,le—i-ﬂczgz)—i- (4.15)
(7

+ MABﬁd)ZB(z, Tyi T X9iZ, T1s + Toy2) | dz.

Here 7, has to satisfy

Ao = 1.
In twistor space, however, we identify A% with a differential operator
DA
O
We can therefore set 7, to be the following integral operator
)
ﬁlf(zaulau2):07 f]Qf(Zaulqu): —1 0 f(zaulas)dsa (416)
where f is an arbitrary holomorphic function. Now the field redefinition ({.9) is good
enough:
— 1 0
Vale) = o [(9561- XA(2, 214 + X9 2, Tyy + Tp2)+
(0%

+ MAB??aXB(Z Tyj + T2, %15 + xzéz)]dz
1 1 0 11 1
= omi C[ XA(Z Zx11+x21, —T15 + Toy)
. -y, 11

1
+ Z_gMABnaX (_ _3511 + Toj, 9512 +x22)]dz

z Bmla

1

- [
C

! ! ! !
Xa (2,212 + i, 152" + T95)

211 31‘1@

!
/3 ~ ~11By I / / dz
+ 2" MapnaX"" (2,712 + 151, 7152 +$22)}?
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Using (f.16) we see that for & = 1 the integrand is regular at 2’ = 0. For & = 2 we get

—2 1 12 0 o / /
Ya(r) = o C[Z Do .XA(Z 1112+ Tai, T152" + Top)
22
x152" +To5 ds' 1 dz'
13 ~I1B/ I / /
+ z MAB/O X722z +$2ia5)7 27

where we used the definition ([.16) for & = 2, and we changed variables from s to s’ = 2s
in the integral that defines 7);. We now see that the integrand in (E17) is regular at 2’ = oco.
Therefore, no deformation of complex structure is needed! However, it was suggested in
[, that the anti-chiral mass parameter Mp enters in a phase of DI-instanton terms.
The argument was based on a proposed indentification of M4p with a VEV of one of the
conformal supergravity fields discussed in [[Ij]. We will not explore this further in the
present paper.
4.3 Deformed holomorphic curve
In the undeformed twistor space, a curve of degree d = 1 in CP3/* is given by (see equation
(4.46) of [F]) a set of linear equations:
X =—a—2yZ, Y =-x5—7057,  Or=_-01-0527 (4.17)

where 244 and 02 are moduli. On the patch U’ [defined in ([L1])] we can write (.17) as

X' =272 —ayi, Y =-x7 —xy, =017 04 (4.18)

After the deformation ({.7), equations (f.1§) no longer hold. Instead, equations ([.17)
imply
A = Lga + LMABEBCDEW%DWE
A 622
1
= 017" — 03 — @MABeBCDE(HICZ’ +0S) (0P Z' + 02)(0F 7' + 0F)

1 1
=5 MABepoppdCoPoF 7/ — (e{‘ + iMABeBCDEG?e%f) z'

1 1
(0 + GAPencontf 0005 ) = 57 MAPencont 695

Unless the last term is zero, this is not an acceptable holomorphic curve. We can cancel
the last term by slightly modifying equations ({.17) in the patch U as follows. We set

1
UA = 08 — 05 7 + EMABEBCDE959§)9§Z2. (4.19)
Then

1 1

1 1
=5 MABepeppdCoPoF 7/ — (9{‘ + 5J\W‘BeBCDEef e?ef) VA
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1 1
— (95‘ + §MABEBCDE91092DHQE + 5MABEBCDEMEFEFGHIH?HPHQGgg{@é>

The poles in Z’ vanish — the terms proportional to 1/Z’? vanishes because there are
too many #3’s, and the terms proportional to 1/Z’ vanish because the symmetric mass
parameter MA5 is coupled with the antisymmetric e—tensor. In the next section we will
express the scattering amplitudes calculated in section f] as an integral over supertwistor
space with support on the deformed holomorphic curve that we just found:

X = —Tyi — 1‘212, Y = Ty — .%'QQZ,

1 (4.20)
UA = 08 — 05 7 + EMABEBCDE959§)9§Z2.

5. Twistor amplitudes with mass terms

As explained in [{], a supersymmetric Yang-Mills amplitude A(f;) can be obtained from
a twistor scattering amplitude fl()\f‘,p?‘,\lff) by multiplying by the appropriate exter-
nal wavefunctions f;(A&, ug, \Iff) and integrating out all the supertwistor coordinates. In
particular, the tree-level MHV amplitudes for 4 external particles (without the mass de-

formation) can be written as

4
. 1
A, i, O = 2i 2/d4xd89A 0% (pig + 2aa A )0 (T + 0NY) —————,
(A pti, U7 = 2ig ag (u M) (T az)H?ﬂ(i’HU
4
A(fi) = H/d2)\?d2uiad4‘1’§4fi()\?ama,‘I’%A)A()\?,M?,‘I’%A)- (5.1)
=1

The d-functions in the integral imply that the twistor amplitude vanishes unless the external

points (A, pi, U7

#) all lie in the same holomorphic curve described by

Lic + Tag A& = 0, T4 4020 =0, (5.2)

for some suitable (zqg,02).
In the presence of our mass term the complex structure is deformed and, according to

(£:20), the holomorphic curve is changed to
1
pio + Taa A =0, WE4 00+ 057 — <M Pepappts 00527 =0 (53)

We claim that (B.T]) is modified to
1

[Tz (N M)

4
/ 1 /
<[] ¢ (Méa%—xad)\ﬁ) 5t (\IIZA + 07 +05 7]~ EMABGBCDE9209595212> ;
=1

AN, i, O = 2ig? / d'z d°0;)

4
Atf) =11 / PN i d U [N g U AN, g, ) (5.4)
i=1

for all “extended MHV” amplitudes (defined in section ) of 4 external particles.
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In particular, if the external function is in a momentum state, f; is of the form of a
Fourier transform of a d-function peaked at some fixed momentum; i.e.,

i=Aidi) () 1 {a a _ yays23d _ Va Yd
T UCNTIN 75 :fi(\p?)W/dz)‘i O] = N = N exp(iATpide),
(5.5)
where pf‘d = )\f‘;\f‘ are the momenta for external particles. The integral over bosonic

coordinates in (5.4) yields

1
(2m)
« / NG F2OE = NOY62(R¢ — XYY exp iVl )

/ PN Pyl / dhz g 821, + s )

= (2717)4 / d‘*mexp(—z‘meA?X?)g(A?) :54(2 pi) gAY, (5.6)

where g(\;*) denotes the N-dependence of A(X*, il W) apart from 62 (1), +ZaaA;*) and
the result gives rise the momentum conservation factor. Consequently, (5.4) reduces to

1
A(fi) = 2ig*8* (ZZ%) /Hd4‘1’§4

4

1

/ a0, T o* (xp;‘ + 08 + 057 — EMABGBCDEGQC@%;EZZ?)
=1

1
T N
Hi:l@vz + 1>

where the external function fl(\I’f‘) is given by A, U4y 4, %\I’A\I’B(JSAB, %EABCD\IIA\IIB\I’C)ZD
and iEABCD\I’A\I’B\IIC\IIDG for the external particle with spin +1, +1/2, 0, —1/2 and —1
respectively.

AT F2(08) £3(T5) f(T5), (5.7)

In the following, we compute various amplitudes in momentum space by (m) (ignore
the momentum conservation factor) and compare them with the results we have calculated
by Feynman rules in section [, with the identification: A = G = Lz’ X = 0, X = ¢ and
® = . In all cases, both results agree with each other and we thus verify the claim in (5.4).
Finally, in section p.2.4, we study a simple but interesting case — the 3-scalar interaction.

5.1 MHV amplitudes (extended MHV at O(M?"))

The Grassmanian integral over d®04 in (b-7) gives a nonzero result only if the integrand
has exactly 8 Grassman 6’s. In the cases of MHV amplitudes, the external functions
fi(¥#) altogether have 8 fermionic coordinates W’s, each of which gives 1 or 3 §’s by the
S-function. The mass term in (5.3) is of the order O(#3) and thus has too many 6’s to
contribute in (5.4) for MHV amplitudes. As a result, the mass deformation does not affect
the MHV amplitudes and the amplitudes are the same as if no mass deformation. In
the following, we compute various MHV amplitudes by (5.7) and compare them with the
results in section B.1.
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5.1.1 Apqoy(+1,+1,-1,-1)

The external functions for this case are Ay, As, Q—ZEABCD\IIA\IIB\I’C\I’DGg and 2—146ABCD X
TATBYCUP G, The integral (B.7) gives the amplitude

4 4
1
2ig” / 1A% / a0, T o* (w;“ + 0 + 0507, — EMABEBCDE959§0523>
i i=1
X ! (A)(A)(1 N \IIC\IIDG>
—_— €
VERTES TR CT ’
1 ’ / ! /
X (ﬂeA/B/C/D/\IIP? \Ilg \Ilg \IlgD G4>
A1 A AlA
IO (7, 7,y = gig R
[[imi (i + 1) [Tz iyi+ 1)
which agrees with (B.1)).

= 2ig* (3,4)4, (5.8)

5.1.2 Aoy (+1/2,+1, -1, -1/2)

The external wavefunctions are \I’AXA, Ao, ﬁeABCD\IIA\I’B\I’C\I’DGg and %GABCD\I’A\I’B X
UCYP . The amplitude is

1
2¢g2/Hd4qu/d89AH54 (@A+9A+9 Z-EMABeBCDEagefafZZ?)
i=1

1 1 -
(Tix1a) (A2) (ZEA,B,C,D/% N I G3>

X 4. .
[, i+1)
1 " " "o

X <66A//B//O//D//\Ile4 \114 \I/f Xf )

. AQGgX D" 1 / /
— 92 dSQAXlA—479A 0AZ 4 e arrien (08 1 02 7o ...
29/ it (07 + 05 Z1 + )24€ABCD( 10 Z3+---)

x (07 + 07 Z3 +"')(91C/+920/Zs+"')(9f)/+95/Z3+“')

—_

x —eangrenpr (07 + 05" Zy+ - VO + 68" Z,+ ) OF" + 65" Zy 4+ - )

(Zs = 20)(Z1 = 23)° a4 4 _2ig 2(1,3)(3,4)°
it 1) A =

where - - - represents the mass-deformed part of the holomorphic curve. The result agrees

with (B.9)

5.1.3 Aoy (+1/2,+1/2,-1/2,-1/2)

(@)

= 2ig? XiX1442G3, (5.9)

The external wavefunctions for this amplitude are U4y 4, T4y 4, ﬁeABCD\IIA\I’B\I’C\I’DGg
and 2—146ABCD\I’A\I’B\I/C\I/DG3. The amplitude is

4 4
1 1
. 9 agA [ 8pA 4 (@A LpA L pAy LarAB CpDpE 72
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’ 1 7 "
X(\I’fXIA)(\Ilf X2A/) <6€A//B//C//DN\I’3 \I’B \1’3 D )

246A///
_ 2ig%(3,4)°
[T5G.i+1)
(23 — 7\ 72 — 27272 — 27, 7o 73) Zg + Z1 ZoZ2 — Zng’]

1 " mn " "
(— B///C///D///WA \I/B \I/C q’D G3>

{X~4AX1AX2A/X~3A/ [(Zs — )23+ (2129 — ZaZ3 — 2735 — 272, 73) 73

s axeaXa [(Za = 25) 23 + (D2 — 2125 — 223 - 22,25) 24
(=23t ZoZ2 — 27122 + 22, ZaZ3) Zs — Z0 ZaZ3 + leg} }
2ig%(3,4)% [ _ oA . Y
= 2O A wavan i (1.3 2,4) + Xt 2,34 1), (5.10)
ITi(,i+1)
which agrees with (B.3).

5.1.4 Ap(a0)(+1/2,0,0, -1/2)

The external wavefunctions are \11’14)(1,4, %\1/124\1/23@243, %\Iff\lffgbgAB and %EABCD\I’Z‘ X
UBUY P, The amplitude is

1
2i d4\IJA/d89A SO+ 08 405 7, — —MAB 0S0P0r 72) —
tg /H H +07 +05Z 6 €BCDEVy Uy 05 )Hf:1<i,i+1>

1 ’ ’ 1 " " 1 nr " " "
% (\IIfXLA) (5\11124 \112 ¢2A’B/) (5\1114 B ¢3A”B”) <§€A///B///C”/D’“\ij \114 \I/f Xf )

2ig? Y ,
= Ea—— .g. {xf bsarpdF AX14(—Z3Z3 + Z1 2323 + Z2Z3 + 22273773 + 27, 72737,
Hi:1 <Za v+ 1>
+ 212320+ 2372524 — Z1Z523) + )214/¢2A/B/¢§,AX1A(*Z2Z2 + 212277 + 2373
42757373 + 271 ZoZ3 24 + 71 ZaZg + ZoZ2 74 — 71 ZoZ3)

1~ /3>
+§X;;‘X1A¢3A B onipi(— 2123 — Z272 + 22,2322 + 27,2273 4+ 22272 74 + 2Z22Z3Z4)}

;2
= %{% 1 X1 A¢3 ¢2A/B'<1,2><3,4> + )?f,beA/B/qﬁg Ax14(2,3)(4, 1>}7 (5.11)

where the identities (A.1) and (JA.17) are used. The result agrees with (B.4).

5.2 Extended MHV amplitudes at O(M)

In the cases of extended MHV amplitudes at O(M), the external functions f;(¥:!) alto-
gether have 6 fermionic coordinates W’s. In order to have 8 §’s for the integrand in (5.7),

the mass term has to contribute exactly once. Therefore, the resulting amplitudes are of

the order O(M).

5.2.1 Ao (+1/2,+1,-1,+1/2)

The external wavefunctions are \11’14)(1,4, Ao, ﬁeABCD\I’g‘\I’g‘\I’é“\I’?Gg, and ‘I’szLA- The
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amplitude by (.7) is thus
4 4 1
2ig? /H dAwd / a0 ] o' (v + 67 + 652 — EMABeBCDEeg‘efefZZ?)
% =1

X m(\I'{‘xm)(Az)(ieAuBnCnDn\lf?”\1133”\1130”\113 " Ga) (U )
= —2ig” /d%g‘(ZlZ‘* + 25~ ZoZs = B2)(Z1 = Zo)
[Tici (i i+ 1)
x MY\ 1 4 AsGaxaam 3—166A~FGH91A/HfH?H{JEUKLHéG‘Q]GfHQL
(3,1)(3,4)(4,1)
[Ty ivi+1)

The result concurs with (B.5).

= 2ig? X4 MPAX14G5As. (5.12)

5.2.2 Ao (+1/2,+1/2,-1/2,4+1/2)
The external wavefunctions are \I/‘f‘xm, \IIQ‘XQA, %eABCD\IlgA\II?\Ilf)Zé) and \I/fX4A- The
integral (5.7) gives the amplitude

4 4

1

2ig? /H dwd / a0 ] o (v + 07 + 052 — EMABeBCDEHQC%)Hfo)
7 i=1

1

Dy e ——
[T i+ 1)
2ig> , e
_ %{XMMAA our W3 Xaar (lez(z1 — Zo) + Z3(Z2 — Z}) + Z2(Z, — ZQ))
[T i+ 1)
Fx1a XA aa MA A\ yam <Z1Z4(Z4 — 7))+ Z3(Z% — Z2) + Z2(Zy — Zl)>

xoa B A AMAA s <Z2Z4(Z4 — Zo) + Z5(Z22 — Z2) + Z2(Z4 — Zg)>}

! 1 " 11 " 1" "
(\IffxlA)(\If? XQA/)(EﬁAuBucan\Ifé4 \IJ3B \Ifg Xé) )(\Iff X4A”’)

o 2ig?
[TiGi.i+1)
X (2,4)(2,3)(3,4) + xoa N XA MM xaan(4,1)(1,3)3,4) b, (5.13)

(XA M o xaar (1,2)(2,3) (3, 1) + 040 xoa M4

which agrees with (B.4).

5.2.3 Ao (+1/2,0,0,+1/2)

The external wavefunctions are given by \II{‘XM, %\I/?\I/fqﬁmg, %\Ilf\IJ?,B(ﬁgAB and \I/‘f‘xm.
The amplitude is

4 4
1
2ig? / [[a'e! / a0 [ [ o (v + 07 + 05z - EMABEBCDEeg 0P oF 72)
i =1

1
[T (ii+1)

1 / ! 1 1" 1/
X (‘1’114X1A)(§‘I’51 vy ¢2A/B’)(§‘1’§4 WP 3 am 5 ) (W3 X1 am)
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19 { A A BC

= - m M A
T i 1) X4A X14¢3~ ¢2BC
4ﬁa—aﬁ+@ﬁ—£@a%—ﬁ%)

+2xaam M"Y 9300 68 Ax14 (Zzzf — Z3Zy+ Z57Zy — Z3Zf)

+2xanm s D b ar MA x4 (Z%Z2 — 2175 + 70 Z3 - Z1QZ3)

+2€AB/B//A///MA//AI

a»

XaanX1495 B poarp (22Z§ - 22223>}

_ ig?
21T, (i + 1)
+2x4am M"Y p3 405 08 Ax14(2,3)(3,4) (4, 2)

4—2X4Aﬂ,¢§V”B’¢23,ALAfA“4X1A(1,2>(2,3>(3,1>} , (5.14)

{X4A'"MAWAX1A¢§C¢QBC (<17 2)(2,3)(3,4) + (1,2)(3,4)(1, 4>)

where the identities (A.17), (A19) and M4 4" g4 4» = 0 (due to the symmetry of M and
antisymmetry of ¢) are used. The result concurs with (.7).

5.2.4 Aon(0,0,0)

Finally, we study the simple but instructive case: 3-scalar amplitude, i.e., Ao (0,0,0).
For the amplitudes of 3 massless particles, the momentum conservation implies that p;
are collinear. Angular momentum conservation further forces the amplitude to vanish for
3-gluon scattering. For 3-scalar scattering, this is not the case and in fact this is the only
nonvanishing 3-particle extended MHV of O(M). The amplitude can be obtained as well
from the integral in super-twistor space [by a formula similar to (f.7) but with only 3
external functions and the prefactor 2¢® replaced by g/2]. It is

. 3 3

1
9 [TLaw [ @02 TL8'ud +00 + 032 — SN Penonpo§of o5 2)
2 i i=1 6

1 1 A1 B 1 A+ B 1 A B
% m <5\II1 \Ill ¢1AB> <5\II2 \II2 ¢2A’B’ 5\1]3 \1]3 ¢3A”B"
Zg { 2 AA BB’ 9 AA BB
= —5—————141%2M . + Z27+(M .
T (i 1 1) VA 2 dranbanm 0577 + ZE25(M A drandsn7)

+Z3Z5(MAY doupdanp dP) + Z3 2y (MAY boupdrap ¢3BBI)
+ 2271 (MY s apdrap dFP) + Z2 Zo(MAY psapdon g pPP) }

; MAA’ ) HBB’
_ WM™ diapdrnp s Hﬁ@—ﬁ&+@%—ga+ﬁa—@@}

21Ty (00 +1)
) / /
= 2 (M prapoomof” )., (5.15)

and we used the identities (A.17) and MABp;4p = 0.
This result agrees with the tree-level Feynman diagram calculation. At tree level, we
have only one diagram as in figure [, where the Feynman rule for the vertex together
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with o7, w7 and @i for the external legs trivially yields the same result. This confirms
again that the mass-deformed 3¢-interaction discussed in section P.3 and appendix B.§ is
required to have the correct holomorphic structure in super-twistor space in the presence
of the chiral mass deformation.

6. N =1 Supersymmetry

The chiral-mass deformation that we studied in section fJ-section [l depends on 10 complex
parameters MAB (A,B =1,...,4) and in general breaks N = 4 supersymmetry completely.
In this section we will study a subset of these deformations — those that preserve N =1
supersymimetry.

The unperturbed N = 4 super Yang-Mills theory has 8 supersymmetry generators
Qaa and aﬁ The N = 1 deformation that we will study in this section will preserve the
generators with A = 4 and break those with A = 1,2,3. We will use indices i, j,k,--- =
1,2, 3 instead of A, when the summation excludes A = 4.

In N = 1 superspace notation the theory contains a vector multiplet V' with associated
chiral field strength multiplet W, and its complex conjugate W*. In addition there are 3
chiral multiplets ®¢ and their complex conjugates ®;, where i = 1,2,3 is an SU(3) flavor
index. The Lagrangian is given by

29y L = /d25d20 tr{@evcbi} + /d26tr{WaW°“ + eijkqﬂ[qﬂ,@k]}
| (6.1)
+ [ tr{W“m T B [T, By + Mi@@j}

Note that the chiral mass term only deforms the d?6 integral, and the chiral and anti-chiral
superpotentials are not the complex conjugates of each other! (The situation is reminiscent
of the deformations used in [24].)

Integrating out the auxiliary fields in the superfields, we find that the mass deformation
adds the following extra terms to the potential

AU = %tr{MijEm@? + gymM €365 [0, ¢l]}, (6.2)

where ¢; is the § = 6 = 0 component of D, /gy
Now let us turn to twistor space CP34. Let us first identify the action of the N =1
supersymmetry generators on the undeformed twistor space. It is

Ao =0, Spe = ;04 50'=0 (i=1,2,3), 60% = (N,

where ¢ and (¢ are the anti-commuting SUSY parameters. Using the holomorphic coordi-

nates on patch U from section [, we can rewrite the SUSY transformations as

6X = (vt §Y = (0, 87 =0, Ui =0, (i=1,23), Ut = + GZ.
(6.3)
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The mass-deformed space, given by the transition functions ([.7), which can be written in
our case as
1 X Y 1 1 y 4 1
Z'=—, X'=2, Y=2, V= U4 Moot v =_uv' (64
7’ 7’ 7 7" tagatt K ’ 7z (64)
is not invariant under the same SUSY transformations (6.J), because they would imply

sut— L

~ 1 o 1
=572 MUejUFUL(¢ + (7)) = §M”€jkl‘1" 4 (Cl + 7(2) ,

which is ill-defined near Z’ = 0. We can fix this by modifying the SUSY transformation

©3) to
60X =GV, oY =0t 62 =0, 60 = —1GMYe U, 50t = ¢ + (2. (6.5)

This modified transformation law still satisfies the correct commutation relations, as can be
seen after some algebra and using M* = MJ*. Thus, the deformed twistor space associated

with (6.1)) is indeed supersymmetric.

7. Summary and discussion

In this paper we studied a new deformation of twistor string theory; we tested the proposal
that the deformation of twistor space to a space whose complex structure is defined by the
transition functions (f.4) is associated with the deformation of N = 4 super Yang-Mills
theory given by the following Lagrangian:

PL=yu <FWFW +2Du¢rD" 61 — o1, ¢J12> + %tr (WDW + T ¢z, ¢]>

W

+ %tl‘ <MABE3EQB + iMIJKgb_T[QSJa gbld) :

Here MAB = MPBA4 is the mass parameter in the representation 10 of the R-symmetry
group SU(4), and MZIX is linearly related to MAZ and is given in ([A.20).

We calculated tree-level 4-point scattering amplitudes up to order O(M) and we
checked that these amplitudes can be reproduced from an integral over a moduli space
of holomorphic curves in the deformed twistor space, just like the undeformed case.

Among other things, twistor string theory is interesting in that it opens a window
into the nonperturbative aspects of topological string theory on supermanifolds. There has
been a lot of progress recently in understanding the nonperturbative aspects of topological
string theories on ordinary manifolds (see for instance [R5-[B1]).

The perturbative open topological string theory with target space CP3* reproduces a
self-dual truncation of N = 4 SYM theory [J]. Extensions to other weighted projective
target spaces were demonstrated in [2()-[RJ]. It was also suggested in [J] that D1-instantons
in the topological string theory complete the self-dual truncation to a full N = 4 SYM
theory. In fact, the integral (f.]) (copied from [{]) is the one-instanton contribution to the
amplitude. Our results suggest a possible extension of these ideas to a 10-parameter family
of deformations of the target space CP34.
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Other deformations of twistor string theory have been studied in [BZ|[B3], and orb-
ifolds of twistor string theory were studied in [B4][BH]. For example, Kulaxizi and Zou-
bos [BY translated the so-called B-deformations of N = 4 SYM [Bf}-[E(] into a non-
anticommutativity among the fermionic coordinates of super twistor space. It would be
interesting to add a chiral mass term to these deformations and to the orbifold construc-
tions.

Another possible direction for further study is the reduction to D = 3 and lower dimen-
sions. The relevant target space for D = 3 is the weighted projective space WCP2/L1L11,
This reduction was studied in [IJ[[][i3] and involves minitwistor space [[3][E4]. Other
reductions of twistor string theory have been recently proposed in [ij]. It would be inter-
esting to further study the corresponding reduction of the complex structure deformation
that was described in the present paper.
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A. Notation and useful formulae

A.1 Spinors
Our metric is in Minkowski signature (4,—, —,—). Spinor indices of type (1/2,0) and
(0,1/2) are raised and lowered with antisymmetric tensors eqg, €,4 and their inverses b,
CIVE .
Aa = €ap)’, A = P)g, Ay = edﬁ)\ﬁ, P eaﬁAB, (A1)
with
€af = €45 = —eWB = 48, €12 = 1. (A.2)
The Lorentz invariants (A, A2) and [A1, Ao] are defined as
(A1, d2) = —(A2, A1) = €apAPA) = AfA2q = —A1aS, (A.3)
and
[)\1, )\2] == —[)\2, )\1] == Edﬁ)\ld)\Qﬁ' == )\1@)\% == —)\?)\2@. (A4)

The vector representation of SO(3,1) can be represented as the tensor product of two
spinor representation of opposite chirality via:
(s%es

Paa = O-deua b = Eudap“’ (A5)

where o = (1,5), " = (1, —&) and & are Pauli matrices.
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Some useful formulae for o-matrices are listed below:

"Za%ﬁﬁ = 2€aB€yp Ez‘aagg = 26%52‘,

(c'T” + J”E“)QB = 5,7, (cto” + E“U“)dﬁ = 277“”5%.

and
trota” = 2nM".

The inner product of two vectors gives

1

1 . 1 .
WHVM = ’I’}MVWHVV = 5 tT[O'MEV]W;LVV = §Wadvaa = §Waavad-

If p* is lightlike, we can decompose p* as

Paa = )‘a)\o'z-
Furthermore, if ¢* is also lightlike (written as gas = Hafla) We have
1 T~

A.2 SU(4) R-symmetry indices

(A.11)

In N = 4 super Yang-Mills theory, the scalar field ¢z is real and in the representation 6

of SU(4). Since 6 is the antisymmetric part of 4 X 4 or 4 x 4, we can exchange ¢7 (Z is

an index of 6) for the complex antisymmetric field ¢4 = —¢ppa (A, B: indices of 4) or

pAB = —pBA (A, B: indices of 4) by

¢ap =Thper,  ¢*7 =T""Por,
where I'’s satisfy
1 1
A A A
57 THAPTY ) = 5(5(}55 — 0p08), Sz apTlp = 5 €ABCD;
and 1 1
[TAB _ _ ABCDTZ 1%, = 5 eapcplECD.
The reality condition on ¢ now reads as
1 1 %
P == AP Poep, $aB = = eapcpd” ", or (pap)* =¢"".

2 2

It follows that
OF oz = $5 11 = 0 p17dos = 0B boan.

Some useful formulae regarding antisymmetry of ¢ 4p are listed below:

1
5 58 dacpdSP = 65 dacn + 93¢ pacn,

,23,

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



—% MABGSP pacp = MPC (pacpdd? + d3cpdd?) = MAC (¢2cpdy? + d3cndd?),
(A.18)

and

"

AB/B//A/// A//B// A B/A/// A B/A A///A
€ ¢y 7 poarp = —0un 3 doarp + 04n @3 “doarp — ¢35 “poarar.  (A19)

The mass parameter M4Z = MB4 is in the irreducible representation 10 of the R-
symmetry group SU(4). Using the double cover SU(4) — SO(6), the representation 10
of SU(4) is induced from an irreducible representation of SO(6) which can be realized as
self-dual anti-symmetric 3-tensors. Explicitly, define

7 K
MEIR T DKL ABCE N DF —y MTIK = Ler pepor MPOR, (A.20)

Then, the 3-¢ coupling from (B.5) can be written as

MABLOPEE tr{¢AC’[¢BD7 ¢EF]} = M*Ik tr{¢1¢§¢l€}- (A.21)

We define the su(4)-invariant symbol

T K
r27k.—rll 17 T8 CPEF, (A.22)

It is symmetric in AB and anti-symmetric in Z7K and satisfies the self-duality relation

1
K
I = £ porT ", (A.23)

We can then write
MR = TITK VM AB, (A.24)

B. Feynman rules with chiral mass terms

The Lagrangian of D = 4, N = 4 Yang-Mills theory is given by

L= é tr (F F*" + 2D, ¢rD ¢ — (o1, 3]2) + é tr (Yy* Dyt + iy [pr, Y]), (B.1)

where Ea = (1/10‘,@@) is a Dirac spinor, and we treat ¥® and Ea independently.’
In terms of N = 1 superfields the Lagrangian is

g2£ = /d2§d29 tr{@@,e‘/@i} + /d29 tr{WaWa + eijkq)i[q)ja q)k]}

N / d25tr{Wde N ez‘j@@j@k]},

chiral superfields: ;= ¢ + V200 + 00F;, i=1,2,3

5In N = 4 SYM 1), is actually a Majorana spinor. But in order to get the Feynman rules by analogy
with ordinary QED, we treat the two chiralities independently and in the end identify external fermions as
anti-fermions to take into account that 1 is Majorana. See also appendix @
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_ I 1
vector superfield: V = —00"0A, +i000X — 60O\ + 5606’0D, (B.2)
where we identify the component fields of (B.2) with those of (B.d]) according to

GA—ip—j = €ijpd, $A=4,B=i = ¢;, (B.3)
and
(Ya=is Y azi) = (i, 0y), (Ya=a,Vazy) = (N, N), (B.4)

where ¢pA8 = —¢BA = TTAB 4 = ABCD 41 /2 (as defined in appendix [A-J).
Now, if the chiral mass term M%®;®; is added to (B.J) as discussed in (B.1]), N = 4
supersymmetry is broken to N =1 and the extra term (f.9) leads to

_ 4 1
AU = tr{MABz/szz/JB + 1 gMABECDEF¢AC[¢BD7 ¢EF]}7 (B.5)

which is added to (B.1)) (with MA=48 = MBA=1 = ().6

In this paper (unless otherwise mentioned), we considered the general chiral mass term
(i.e., M* = M4 could be nonzero) and the mass deformation had the form (B-J) (thus
breaking N = 1 supersymmetry in general). In the following, we first present the Feynman
rules involving the chiral spinor mass term in [B.JHB.§ and later in B.§ we present the
Feynman rule for the 3¢-interaction.

B.1 Fermion propagators

When the chiral spinor mass term MAB4), AEdB is added to (B.1)), the Dirac part of the
modified Lagrangian reads (the color group factor is ignored)

. _ 0 54%puc” .\ (Vss
Loimae = D710, ) — MABG . 5% = (4%, . - Bl s ) (B6
D 1/}(2'}’ u)w waAwB (1/},4 waA) <5A3p“5’wéﬁ —MAB(SGB ¢% ( )

The spinor propagator is ix (inverse of the middle operator) on the right of (B.G).
With the identities in ([A.7), the propagator is given by

. ABs B sA w : AB5 B sA .
i M 504. ) Bppoaﬁ _ i M ; 5'04 ) BPoj . (B.7)
p? \64Pp,amif 0 P2\ 0a"p* 0

The corresponding Feynman rules are listed in figure [I.

B.2 Solutions of Dirac equation

With the anti-chiral mass term, the Dirac equation can be read off from ([B.6) as

0 0a"puct s\ (veBY _ 5
A =ud AB 5o -5 | =0 (B-8)
0" gp ot B _MAB§ 3 Up

5The equality of the chiral spinor mass terms in (@) and in (@) is obvious, while the equality of the

mass-deformed 3¢-interaction terms is less transparent and will be discussed in appendix .
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A L BB _ 54, &4 y b.B :i%@xB
O[,A f ﬁaB :Z'éﬁ—;MAB Oé,A f ﬂaB :0

Figure 1: The fermion propagators in the presence of a chiral mass term.

The solutions were described in section R.1. Consider the positive-frequency solutions, i.e.,
Vo) = Yo(p)e” ™ and " (z) = ¥ (p)e ®*. These Yo(p) and ¥ (p) obey the equation
of motion (R.1]). It is easy to see that p? = paap™® = 0, and thus the momentum is lightlike
and can be decomposed as (R.4). A basis for the solutions is given by (B.3), which is
invariant under

Mo = Mot Chay & =0t —CMA a5, T —0p (B.9)
for any arbitrary number (.

B.3 Helicities and incoming functions

In the presence of an anti-chiral mass term, the helicity and chirality no longer coincide.
However, since the 4-momentum p is still lightlike helicity is Lorentz invariant and can be
used to specify the polarization of incoming and outgoing fermions.

When the lightlike p is written as (B.3) and if we treat g4(\, ), 04(\, A) and 74 (A, A)
in the solution (2.3) as continuous functions of A and A, the helicity operator is given by

iL:Aa— _Adf’ (BIO)

which gives eigenvalues —2h when acting on the function 1 (p) if 1(p)e®?* is a momentum
eigenstate [B]. To find the solutions of positive and negative helicities, we first study some

properties of helicities:
Lemma B.1. hf(E) = 0 if f(\,)) is a function of the energy E only.

Proof. 2E = (po + p3) + (po — p3) = p1j + Pay = )\15\1 + )\25\2. It is easy to show hE =0
and therefore hf(E) = 0. O

Lemma B.2. ima = Ny, if Na is given by’

NN XN

= —— = —— B.11
2 oF oF ( )

M=o T 2k

"The exact reason for the choice ) will be clear when we study the normalization condition (B.15).
The choice ([B.1]) satisfies (@) Also note that in Minkowski signature we have A}, = £A4 and we choose
the + sign here for positive-frequency solutions (— sign is for negative-frequency solutions).
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Proof. Follows immediately from E = )\15\1 + )\25\2. U

Using (R-3), let’s write the solution as a Dirac spinor®

YA =95 + U = X0a + Aao® + MAP0,55. (B.12)

The eigenvalue problem iLl/Ja = —2hi, now becomes

~

hpid = b (354 + Ao + M P, 55 )
= —X9G4 + A (h5a) + Aao® + Aa(ho®) + MAPna(hop) — M*Pnaop (B.13)
by Lemma B.2. Furthermore, by Lemma [B.1, if we choose ¢ = 0 and g = 9(E), we get

the positive-helicity state with h = +1/2; if we choose ¢ = 0 and p = o(E), we get the
negative-helicity state with h = —1/2. Therefore,we have a basis of helicity states:

uly = GA(E)ANY + MAPGp(E)a, v, = 0 (E)Aa- (B.14)

The normalization condition will fix g, ¢ and 7. Firstly, we consider the orthogonality
of u™ and u™:

MBC ocm
MBC ocn2
op\l
op\

ul B = (0™ %, 025, 0,0) = oM MBG0 (N + Nymp) = 0. (B.15)

This together with (R.4) enforces the solution in ([B.11)).

Secondly, consider

A1

A2

ul B = QA*QB( 1,25,0,0) = 0P <)‘15‘i + )\25\2) = 2E 0% oP. (B.16)

0

To have the correct normalization condition, namely ul B = 2E5AB , 0Vs have to satisfy

oV oP = 648, (B.17)
Finally, we compute
MBPgpm
ulfuff = ((04gem). (MG me), (@a21)". (2437)") MZ%W
op\

= (MA%Ge)" MPPp (jmf? + mal?) + Eadm (A +X222)

8 : : A _ T A A 0 wé‘ d’ﬁ
The Dirac spinor ¢ =9, + & is a shorthand for ¢, = Ed + 0= Ed .
A
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(MACEC)* MBDgD Y
= 2F < 152 + 040B (B.18)
by (B.11)). To have uLAuf = 2E54B | we have to set
MAC’~ * MBD~ ~
( Qiljz Lt Ghop = 047, (B.19)

This in general is not possible. The failure to orthogonalize the + helicity part is due to
the fact that the Hamiltonian is not Hermitian (CPT is violated). Nevertheless, for an
arbitrarily given g4(E) and o4(E), uf, = 0ANY + MABGpn, can always be normalized
and used for incoming states.

To summarize, the basis of normalized helicity states is:
ulo(p) = 24X+ MAPapne,  uly(p) = 0" o (B.20)

Following the recipe of field theory, in momentum space, we use uy(p) for the incoming
fermion state functions with £1/2 helicities.”

B.4 Outgoing functions

To find the outgoing states, we cannot just take the Dirac conjugate (i.e., u%?) of (B.20)
as in ordinary field theory, because CPT is no longer invariant. Instead, we should restore
CPT symmetry by adding the anti-chiral mass term Map = (M4P)* and get the new
solution u‘iA and its Dirac conjugate ﬁ‘f. In the end, we take Map — 0 (formally keeping
MAB fixed) and a“iA in this limit will be the outgoing states for our theory with only a
chiral mass term.

With both chiral and anti-chiral masses, the momentum is no longer lightlike. However,
we can take the relativistic limit (p > M) and still decompose p = AX. At the order O(M),
the helicity is still well-defined, and repeating the calculation above leads to

. MABG
A — AB~ _ OB
u—l—a(p) R 0ANY + M7 0N = ( EAS\d ) )
UA ( ) ~ A)\ + M Br& _ QAAQ (B 21)
—a\P) = 0 Aa ABO 1N = MABQBﬁd ) .

where A%, = Xdﬁé‘ = 1. This gives the Dirac conjugate:

% (p) = 0"\ — Mapo”iia = (0" X%, —Mapo®is)
A (p) ~ =M o0 + Gaka = (~M*P5pn°, Gak), (B.22)

9When studying the holomorphic structure of scattering amplitudes connected to twistor string theory,
we relax the conditions ([B.11)), (B.17) and (B.19). Instead, we use the freedom (@) to set 7 to na = (1,0)
while scaling A\* to (1,Z = A%/\%).
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+ p o + p o’

————% = M*Bg, —————e  — ¢
incoming incoming
- p «a — p &
> ° - QA bW > ° =0
incoming incoming
+ P« + P o
< \ = QA)\O‘ < d =0
outgoing outgoing
— P a AR~ — p o .
N ° = —M""opn® N * = 0AXa
outgoing outgoing

Figure 2: The Feynman rules for external fermions.

by the identities MAE™ = Myp, (04)" = 0® and (14)* = —74.'0 Setting Mp = 0, we get
the outgoing state functions:

a(p) = 0" @ (p) = —M*Popn™ + Gada (B.23)

Equivalently, (B:20) and (B:23) give the Feynman rules for external fermions depicted in
figure P,

B.5 Negative-frequency solutions

Similarly, we can solve for the negative-frequency solutions: 1 (z) = v(p)e®”*. Repeating

the calculation above, we find a basis of normalized helicity states for anti-fermions:!'!

v (p) = a2 — M2 BGpn.,  vA(p) = 0"\ (B.24)

To compute v4(p), we follow the method discussed after (B.23). For negative-frequency
solutions, however, we have (A%)* = —\% and accordingly we should choose (g4)* = 0%

and (n,)* = 74 (contrary to the positive-frequency case). This leads to

Tp) = —0™\%,  TA(p) = —Bara — M P gpn~. (B.25)

%Tn Minkowski signature, we have (A\*)* = +2% and we choose the + sign here for positive frequency
solutions. In order to satisfy A%n, = S\aﬁd = 1, we have to choose (1.)* = —fj¢ correspondingly with an
extra minus sign.

H1n fact, since CPT is violated, “anti-fermion” is not an appropriate term to describe the negative-
frequency solution. Nevertheless, we use this name anyway for convenience.
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+ — + —

— <« = —p\ < ° =0
incoming incoming

p p .

_ J— o " — — (6% o~
. ~ * = —M*Bgpn~ , D * = —04\a
incoming incoming

p P .
+ - AB~ + -— o~
> ° = —M"7 0B > * = 0aN”
outgoing outgoing
p P .
— - (6] — - [0
> ° - QA W > ° =0
outgoing outgoing

Figure 3: The Feynman rules for external anti-fermions.

In momentum space 4 (p) is used for the incoming anti-fermions with +1/2 helicities and
v4(p) for the outgoing anti-fermions with +£1/2 helicities. The corresponding Feynman
rules for external anti-fermions are depicted in figure j.

Notice that since ¢" = (¢¥*,,) is Majorana, the anti-fermions with adjoint color T}
and helicity & are identical to the fermions with T; and helicity . We can treat any
external fermionic legs as either “fermions” or “anti-fermions.” The Feynman rules in
figure ] and figure fj turn out to give the same resulting amplitude regardless of which way
we choose, as long as all the directions of the arrows are consistent with the vertex rules

depicted in figure [i.

B.6 Mass-deformed 3¢-interaction

We first study the case that M4 is restricted to M¥ (i.e. MA=%E = MBA=4 = (). With
the field identification (B.d), the mass-deformed 3¢-interaction term in (B.9) is given by

1
4

On the other hand, with M4B — M%_ the 3¢-interaction term in (B.9) reduces to

- - 1
Mejp ¢¥[0F, 0] MY ¢51 Gai €€ [P, dpy] = 3 MM b bik, dim). (B.26)

tr { MABPEL 0 lonp, dEF)}
= tr { MMM Gis[dik, um] + MIEFN™ G [bja, ) + -}
— 2r {Mije’“m Suil b, ¢lm]} . (B.27)
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Figure 4: Feynman rules for 3-scalar vertices (planar part only and the algebraic factor for the
color group ignored). Here, Z, J and K are SU(4) R-symmetry indices in the representation 6.
(Z,J,K) are in the counterclockwise order on the page, since for the planar diagram we use the
convention that the color group factor is the trace of adjoint matrices in counterclockwise order.

Comparing (B.26) with (B.27), we conclude that the 3¢-interaction term in (6.2) equals
that in (B.5) when M4B — MY,

For general MAB we then have the 3¢-interaction in the Lagrangian:

% tr {MAPePEE ¢\ lopp, dpF]} = % tr {MABPEE ¢ pplopr, dac)} =

= S MAPLECTE TP {61 [0, 6x]} = § MAPTSCIE 0P e {r (b, éxl} = - -
= L MAPTE T PP tx {61 (07, 0x]} = T MPTE tr {7 [0, o]} (B.28)

“,,.m

where means cyclic permutation of indices. The planar part of the corresponding

Feynman rule (3-scalar vertex) is depicted in figure [].

B.7 Other Feynman rules

The Feynman rules involving the gluons do not change with the (anti-)chiral mass term.
For our purpose, instead of arbitrary €,, we use helicity to describe the polarization. To
get a positive (negative) helicity polarization vector, we set

. Sala Aaéa

GM,“F — €aa — <§ )\>7 6},6,— — €aa = [”‘ 5]7

* Aago'z * ~ gaj\d
6“7+ — €acy — [5\ g] s 6“77 — €acy — <£’ )\>7 (B29)

where £(€) is arbitrary but not a multiple of A(A) (See [§]). Feynman rules for external
gluons are shown in figure [j.

All other Feynman rules are exactly the same as those in the massless theory. In
particular, we list the fermion-gluon vertices in figure [f], fermion-scalar vertices in figure fq
and scalar-gluon vertex in figure §.
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:t/\/\/\/\/\/*. = ¢ — € = 5045%1 f_\/\/\/\/\M = € e = Ag{a
. . Byt aq (€N . . Hy— aq ¥
Incoming Incoming

. p p

- ~ [ -~ ~
Ao € ~ s
VAV U aYa vy ) — . — [ [V Ve WababavYa ) J— J— a
. = €t 7 Coq = [fg‘f . = €~ faa = g(& Y
outgoing ’ outgoing ’

Figure 5: The Feynman rules for external gluons.

3,B 3,B
a, A a, A

Figure 6: Feynman rules for fermion-gluon vertices. Here, A and B are SU (4) R-symmetry indices
in the 4 or 4 representation. The algebraic factor for the color group is ignored.

5,B 5, B
> —— T =2igI% 5% > —— I =2igrIBagpB
a, A a, A

Figure 7: Feynman rules for fermion-scalar vertices. Here, A and B are SU(4) R-symmetry indices
in the 4 or 4 representation and Z is the index in 6 representation. The algebraic factor for the
color group is ignored.

C. Detailed computation for Feynman diagrams

In this section, we present the calculation of the tree-level planar Feynman diagrams in
detail for the scattering amplitudes presented in section f]. Some techniques used here can

be found in [44)].
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g (p1 + p2)H6/

N[

p1f

/T

Figure 8: Feynman rule for the scalar-gluon vertex. Here, Z and J are SU(4) R-symmetry indices
in the 6 representation; p; and ps represent the physical momenta if the corresponding dashed line
happens to be an external leg. The algebraic factor for the color group is ignored.

(a) (b) (c)
D4, + D3, +

p15+ p25+

Figure 9: Planar Feynman diagrams that contribute to the MHV amplitude
Aooy(+1,+1,—1,-1). In order to directly apply the Feynman rules as in appendix B, in
the figures we are not using the convention that all external legs are incoming (instead, all depicted
momenta and helicities are physical).

C.1 MHV amplitudes (extended MHV at O(M?))

In this subsection, we calculate MHV diagrams without mass contribution.

C.1.1 Apoy(+1,+1,-1,-1)
This is a 4-gluon scattering amplitude. The Feynman diagrams are shown in figure [
Accordingly, the amplitude of 4 gluons are the same as that without the mass term, which
is given by (See, e.g., [{])

ig® _ (3,4)"

1=1\"

(C.1)
C.1.2 Ap(yoy(+1/2,+1, -1, -1/2)

This is a 2-gluon and 2-fermion scattering amplitude. The Feynman rules give two contri-

butions listed in figure [L0:

i(p1 +P2)BG5AB
(p1 + p2)?

Ay = e§u+gf)\f <igagﬁ-> (igaﬁd) 01ANS €2 - (C.2)
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B
(a) +, 5,4 +,p3 (b)

+,A’p1 +’p2

Figure 10: Planar Feynman diagrams for the MHV amplitude Ao (asoy(+1/2,+1, —1,-1/2). Wavy
lines are gluons and solid lines are fermions. Time is in the vertical upward direction.

Here, €2, and €3, are gluon polarization vectors for the particles with momenta py and
p3, respectively. ¢ . are Pauli matrices. By the rules in (B:29) and in figure fj, we have

8B
20 N26 . y )‘3ﬁ§~35
€ (pz)Ugd = ’ € (p3)0 3 — R (C3)
h (€2,2) 3,8
where & and £3 are arbitrary spinors.
L9 04 014 8 c YBya | By« Y. 3@
Ay = = AiA38855 | ATAT + A5A5 ) Eaa oA
(L2)[1, 2003, &) (g, ha) 'Y (W08 +2023) 1
. 2 A~
L9 04 014 - -
= 5 (3,4) (€3, 1](1, &2) + [€3,21(2,&2) ) - (C.4)
(1,2)[3,&5](&2s A2) < >
Gauge-fixing the external gluon polarizations by taking & = A3 and & = o, we get!?
o A~ (3,4)(1,3)[2,1] o oas o (3,4)%(1,3)
Ay — g’ 04 014 BHLIZA_ —ig7 04014 =7 C5
1A )R, 3)2.3 S VEENTT (©5)
where we have used the identity
2,1] _ (43)
= C.6
23 4L (0
which follows from momentum conservation, Z?:l )\ZO‘S\? = Z?:?’ )\ZO‘S\?
The diagram of figure [[db gives
Ap = €3, (19) [ (p2 + p3)? + 1% (P2 — 2p3)" + 1 (p3 — 2p2)"] €2+
. Nop Bya (; ., o A ~ Y&
X |i——— Mg (190240 AT, C.7
[(pg—p3)2}g4 4(9 B)Ql 1 (C.7)

where pheg,+ = €5, p§ = 0 and n*” €}, 3,4 can be expressed again in the form of figure i
with the help of the identity ([A.9).
It follows that
_ —ig*0i 014 i~
Ab — = 4)\1
2<25 3> [25 3] [35 53](525 2>

12Henceforth, an arrow — represents a particular gauge choice.
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Figure 11: Planar Feynman diagrams for Ap(asoy(+1/2,+1/2,-1/2,-1/2). In (b), the helicities
for the 1st and 4th particles are flipped since we treat them as anti-fermions.

X {5?)\55\25 €25(P2 + P3)ad — 236 M30 5 Eappy” — 265N €2a5\2aP255}
—19295}5},4
2(2,3)[2,3][3, €3] (&2, 2)

—2(4,3)[€3, 1][2,3](3, &) — 2(4,62) (3, 2)[2, 12, 5] }

{(4,2)2,1)3,6)[2.&] + (4,3)03,1](3, &) 2, &

=0 (C.8)
in the gauge & = A3 and §~3 =X
Therefore,
oo (+1/2,+L,—1,~1/2) = g + 4 = igP0dgia L5 (g
H (i + 1)

This is a 4-fermion scattering amplitude. The Feynman diagram in figure [[](a) gives

Ao = (@ND@A) (19000 0) | 2 | (19030 ) (65 00)@un )
4%0.2)

3,41, 2] 3
T (i + 1)

= 2ig® 04 01405 Q23<

| (C.10)

= 2ig? 04 01405 025

by the identity ([A.G).
Since the anti-fermions with adjoint color 7; and helicity + are identical to the fermions

with T; and helicity T, we should consider the s-channel as shown on figure [[1)(b), which
gives

_is . . L .
Ab = (Q4 >\46)(93 )\ ) (2ZQF‘7 66 ) [ﬁ] <2ZQFIAB6B > (—QlA)\ld)(QQB)\g)

~—

(3

W

= —2ig* (0401408 028 — 05 01405 52B) 1,2)
3,4)%(2,3)(4,1)
T, G,i+ 1)

= —2ig*(01 01405 0ap — 0401405 02B) (C.11)

,35,



4B /7

\

+,A \I

Figure 12: Planar Feynman diagram for Ap(p0y(+1/2,0,0,—1/2). The dashed lines are scalars.

by the identity (A13).
Thus,
AO(MO)(+1/27 +1/27 _1/27 _1/2) = Aa + Ab
2ig?(3,4)*

R TN {04 01408 025 ((2,3)(4,1) — (3,4)(1,2)) — 04 G107 025(2,3)(4,1)}
i=1 (2%4

7 2 2
— —H%;g<<3 ﬁl {04 01402808 (1,3)(2,4) + 0§ 01402805 (2,3)(4, 1)}, (C.12)
=1

where in the last line we scale (A}, \?) = (1, Z;) and thus (i,7) = Z; — Z;.

177"
C.1.4 Ap(o)(+1/2,0,0,-1/2)
The Feynman diagram in figure [[3(a) gives:

Ay = (082 (01429) (ig ot 0% B) [ﬁ} (% (p2 +p3)”5z‘7> P13 T
= —ig’ 0} 014¥3 31 4 2>[;’<3 >[< i]’)>[ k)
= ig29f§1A‘~PQBC<P3BC<H;(f(l,z(_{_ 1>> 7 (C.13)

where 37 and o7 are used for the external scalar particles and ([A.14) is used.
figure [3(b) gives:

i 0P : .
e [ ET
(4,1)[1,1] + (4,2)[2,1]

(1,2)[1,2]
= 2ig 0 01495 3BC <2’3><f’ 124 (C.14)

HZZI <Z7 v+ 1>

Ay = 3705 \) (Qigrgz)‘sﬁw)

= 2ig% 0P 014905 0380

Altogether,

AO(MO)(+1/27 07 07 _1/2) = Aa + Ab
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Figure 13: Planar Feynman diagrams with two external fermions and two external gluons corre-
sponding to the extended MHV amplitude Ao (+1/2,+1,—1,+1/2).

2ig%(3,4)(2,4) (1 ,_ -
= ﬁ{yﬁmwf%zgcﬂ, 2)(3,4) + 0f 01405 p3p0(2,3)(4, 1>}-
1=1\"

(C.15)

C.2 Extended MHV amplitudes at O(M)

In this subsection we will calculate the extended MHV diagrams with the contribution of
the mass MAB up to the first order.

C.2.1 Apapy(+1/2,+1,-1,+1/2)
The Feynman diagrams are listed in figure [L3;

i(p1 + p2)ga 647
(p1 + p2)?

Ay = €§V+§4BS\4B (igﬁ”ﬁﬁ> (ig?‘uda) MAcglcnlaeng_

M Poiats 1 8.8 - T 1 Saca

= o aB 66 s b+ sk Meime

_ - 23rAB~ ~ [4753“37 1><§27771> i VABS S [472]<371><37771>

S Mo s ey A s 2l ,2)

(3,1)(3,4) {(3,1)(3,m)} (©.16)
[ Gi+1 7 '

= ig? M5 4041

in the gauge & = Ao and & = \s.
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Similarly, we have

i(p1 + p2)P* 045
(p1 + p2)?

Ap = 6§u+(_MBCE4C77£E) <i9025')

] (igohs) praAfest

: 2arABx -~ . .

1g°M*7 014048 8y 7 [i6va . i0ra S

- 3 NyA36 835 [ALAT + Ao A2 | aadaa Al
(1,2)[1,2][3,&3](&2, 2) 4 3ﬁ[ 1 2 }

_ ieaABs s Bm)€s (1 &)
= —ig"M"" 014048 123 6l(6.2)
— —ig®?MAB 31 4048 <?£,7724>>[E))1,’22]]<<21,’33>>

_Z'QQMABEIA~ <37 1><37 4> {<3a 4) <37 774>}

= B C.17
T i) 10
in the same gauge.
Meanwhile,
e o~ = e\ [ MABeg ] Y
Ac = 63’/+Q4B}\4B <Zg§y’6}6) [lm} (’LQO'uad) QIA)\? €2 u+
i ZMAB~ A~ B » .
=Y PADE — R,5650 Eaadaa A — 0, (C.18)

(1,2)]1,2][3,&](62, 2)

for A§&aq — (3,3) = 0.
Furthermore, since the 3-gluon vertices in diagrams (d) and (e) have exactly the same
structure as that in figure [[4(b), we have the same vanishing result as ([C.§):

Ag— 0, A. — 0, (C.19)

as we are taking the same gauge, & = A and &5 = \s.
As a result,

Aoy (+1/2,+1, —=1,41/2) = Ay + Ay + Ac + Ag + Ae
ig? MAB g1 4045 (3,1)(3,4) {(3,1)(3,m1) — (3,4)(3,m4)}
X (i + 1)
i MABG 1404 (3,1)(3,4)(4,1)
—) T,
2 Hiil <Zal + 1>
where in the last line we scale (A}, \?) = (1,7;) and (n},n?) = (0,1); accordingly (i, j) =

: (C.20)

C.2.2 Apry(+1/2,+1/2,-1/2,+1/2)

The Feynman diagrams are listed in figure [4. Figures (a)-(d) are diagrams exchanging a
gluon propagator while (e) and (f) exchange a scalar propagator.

3Henceforth, a long arrow — represents the scaling (A}, \?) = (1, Z;) and (n},n?) = (0,1).
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The Feynman rules give us

Ay = (=MPFoam) (@14X7) (i9054,0" ) [ﬁ} (ig0% 3070 ) (5 X)) (@2835)

<3’ 774>[1’ 2]

(1,4)[1,4]

(1,2)(3.4 (3.4(3,m0) )
[limi (i + 1)

= —2ig*(M*P51404p) (0§ G2c)

= —2ig*(M*P51404p) (0§ G2c)

by the identity ([A.G).

~ X ~ . —uda — 1Ny .y ~ 30
Ay = (Gap M) (MAEG1E014) <Zg<7’“S 5AD) [%] (ZnggfsBC) (930)\%)(9213)\5)

(p1 — pa)
= —2ig*>(M*P314040)(0§ G20) 7%’ 11>>[[12’ j]
= 20 (MA G145 (o o) 2B LB LB )} (C.22)

H?:l <Z7 i+ 1>
by the identity ([A.G).

(53N ACAN (gt 5D — N - wafBs A\ ([~ . BF ~
Ac = (0apy)(03 )\3)<290755 C> [7(]91_‘_1)2)2} <zga 0B )( 014M16) (M”77 02rm23)

= ZiQQ(MAB§1A§2B)(Q3C§4C)%

<2’ 3>2 <772’ 3> <4’ 1>

= 2ig*(M*P514825) (05 Bac) T i) (C.23)
and
Ag = (§4D5\§1)(9g)‘g) (1'90555[)0) [%] (i90255BA) (_MAEﬁlEW?)(EQBS‘g)
= 20 (M o) (i)
= —2ig®(M*P514028) (05 0ac) 2,3)(3,1)(3m ), 1 : (C.24)

[T (i +1)

The Feynman rules in figure [] give:

~ ~ & . 5 —10, . ~
Ae = (34D 3)(@140T) (QZQPID A%‘S) [71“72} <219F5355 v) (6§ A (MPE G pma5)

(p1 — pa)

o2 aB~ ~ o~ L BD~ ~ O~

= —2ig a4 M*7 01402803 04c — M7 02804p 05 01C |, (C.25)
and

- ) -6 . ; ~ = ~ £
Ap = (650 MPHE 5y prnus) <2191%D56w> [71”7 2] <229PJAB5BQ) (—QlA)\1a)(QQB)\§)
(p1+p2)
5 23 Mm) (v BD~ ~ o~ AD~ ~ O
= —2ig 1.9 M”"04p02B03 010 — M 01404p 03 020 (C.26)

by ithe dentity (A.13).
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Figure 14: Planar Feynman diagrams with four external fermions corresponding to the extended
MHV amplitude Apap(+1/2,+1/2,-1/2,+1/2).

Altogether, the extended MHV amplitude for the four external fermions is

Aoy (+1/2,+1/2,-1/2,41/2) = Ay +--- + Ay
2ig? ~
_— MAB 1,2 3)(3,1
H%<i’i+1>{9m G0 Bac(1,2)(2,3)(3, 1)
+01405 025 M PP 04p(2,4)(2,3)(3,4)
+02805 1AM P G1p (4,1)(1,3)(3,4) | (C.27)

C.2.3 Ao (+1/2,0,0,+1/2)

The relevant Feynman diagrams are given in figure [J. Diagram (e) involves a 3-scalar
vertex, which is due to the presence of the chiral mass term (as discussed in section [f and
appendix B.6).

The fermion-exchanging diagrams are calculated as usual:

i(p1 + p2)sad%

A, = MBMG, P (2igTd [
a P37 04 774( g BC) (1 + p2)?

} (2igTTP4) 51aXT o1

— 92 5u~MCB pa~ (2,3)(3,4)(4,1)(m,2)
g 04C ¥Y3BD¥Y2  01A 21_[;1 1<z,z+1>
— _2i92§4CMCBSDBBDSDQDA~A< 33,9, 1) (C.28)
2Hi:1 i+ >
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Figure 15: Planar Feynman diagrams with two external fermions and two external scalars corre-
sponding to the extended MHV amplitude Apap(+1/2,0,0,+1/2).

and

i(pl + p2)6a5([)) (

Ay = 90375435‘45 (%gerC) (p1 + p2)?

gL PN MAP G pi1a @or

= —2ig°0up PP 0apaM*P g1 p

(1,2)(2,3)(4,1)(3,m)
2[Ti (ii+1)
(1,2)(2,3)(4,1)
2Hi:1<2’ >
The gluon-exchanging diagrams are given by
~ 3 - _ufa ~ — U i v
Ac = p3g0aA5 (290“6 55) MA“1cma [ﬁ] (59(192 +p3) 5IJ> o1
. _ g (1,2)(3,4)({1,3 ,2) 4+ (1,2)(n1,3
= ig? 0 MPCG ool P (1,2)(3,4)((1,3){(m, 2) + (1,2){(m,3))
2 Hi:1<z, i+1)

A'B’ <172><374>(<173> + <172>)

— —1 M C A'B’
9 04B Q1CP1A'B' P2 21—[?:1@.’1. 1>

— —2ig*0upoFP papaM P51 p

(C.29)

(C.30)

and

P4+ p1
g (1,2)(3,4)((2,4)(3,m4) — (2,14)(3,4))
215, (iyi + 1)

e e[ ] (g .
As = 3gMPPgipn] (Zgggcﬁg) 014AT [ﬁ} (5@2 T ps) 5Ij> i

= ig*0uMPCG10014 5 9%
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o N s (1,2)(3,4)((2,4) + (3,4
— —19294BMBCQ1CSO1A/B'90§43< i 4>(<. .> < >)-
21 (G, +1)

Finally, the Feynman rule for the 3-scalar vertex as depicted in figure [ gives

(C.31)

= = . 3 —i5£;€ )
Ae = Q4B>\4BQ1A)\(1X (2ZQF£BA6§) [7 (_ EgMCDF’CC’EF%FFJEF) 037 PaT

(p1 — pa)?
. 9 01A04B LBADK cD EF
— 9 2741(5 [EBAT )M
g <174>[174] [ ) ] LK CE ©2DF P3
. 1,2)(2,3)(3,4) . _
= —292< 4>< : ,>< ) 01A04B (MBC<P20D 3P — MA%pacp <P§3D)
Hi:1<z,l + 1>
) 1,2)(2,3)(3,4) (- N . _
= —292< 4>< : ,>< ) {Q4CMCBSD3BD%0§A91A + 0189PP 0opaMAP 1 p
Hi:1<z,l + 1>

1_ " g
+§Q4CMCBQ1BSO§ p SD2D/B’}a (C.32)

where the identity (JA.1§) is used in the last line.
Put all together, we have

AO(M)(+1/270707+1/2) = Aa + Ab + Ac + Ad + Ae
. 2

— ﬁ{((l?))(&‘l)(l,‘l) +(2,3)(3,4)(2,1))osc M“P p3pp 05 014
i=1\% 7
+(<1’ 2><2’ 3><1’ 4> + <2’ 3><3’ 4> <2’ 1>)§4B QDSBDQD2DAMAD§1D
S 2001, 403, 4) + (2,33, 42,128 M ol pamry )
ig?

(2,3)(3,4)(4,2) 010 MEBospp b 514

[Tzt (i + 1) {
+(1,2)(2,3)(3, 1)oap s " 0204 M*P 51 p (C.33)
1
2

(<17 2> <27 3> <37 4> + (17 2><17 4> <37 4>)§4BMBC§10¢{5B,DI@2B/D’}-
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