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1. Introduction

Twistor [2] string theory [3] studies perturbative scattering amplitudes of massless particles

in N = 4 Super-Yang-Mills theory in terms of a topological B-model with target space

CP
3|4. This target space is a Calabi-Yau supermanifold [4][5]. (For alternative formulations

of twistor string theory see [6][7][8].) Twistor techniques are, in general, useful for dealing

with massless particles. They have recently been used to derive simple expressions for

scattering amplitudes that have previously never been written in closed form. (See [9] for

a recent review.)
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In this paper we would like to describe a theoretical extension of twistor string theory

that includes a mass term for the fermions of the vector multiplet of Super-Yang-Mills

theory. Such a mass term, of course, breaks supersymmetry and conformal invariance as

well. In general, a mass term precludes the use of the twistor transform which requires

that external particles have lightlike momenta. (But see [10] for recent developments that

use twistor techniques indirectly to calculate scattering amplitudes of massive particles.)

However, if the mass term only involves spinors of one chirality and does not include

the spinors of the opposite chirality, the plane-wave solutions of the free Dirac equation

are still lightlike. Of course, such a model breaks CPT symmetry, but it is consistent

mathematically, and we can calculate scattering amplitudes in this model. The amplitudes

are holomorphic functions of the chiral mass parameters.

The physical relevance of the scattering amplitudes that we get in such a model can be

described as follows. The scattering amplitudes of a model with a CPT-invariant fermion

mass term depend on the complex mass parameter M and its complex conjugate M∗. It

can be written as an analytic expression in two formally independent variables M and M∗.
The amplitudes of the chiral-mass theory can be defined as the expressions that we get

when we formally set M∗ = 0 in the physical amplitudes.

In this work we study the twistor approach to N = 4 Super-Yang-Mills theory with an

extra chiral mass term, and we expand on ideas presented in [1]. There, it was argued that

the free-field equations of motion of the augmented theory still have a twistor description;

the relevant twistor space is a certain super complex structure deformation of CP
3|4. In

this paper we calculate 4-particle scattering amplitudes and extend the notion of maximally

helicity violating (MHV) amplitudes to include the chiral mass term. In the massless the-

ory, Witten discovered that MHV scattering amplitudes vanish, when expressed in twistor

variables, unless certain algebraic conditions hold. The amplitude does not vanish only if

there exists an algebraic curve of degree d = 1 in supertwistor space, CP
3|4, such that all

the twistors that label the external particles lie on this curve [3]. Does a similar assertion

hold for the theory with the chiral mass term?

In this paper we will explore this question for 4-particle amplitudes. In section 3 we

extend the definition of helicity to the fermions with a chiral mass term, and we calculate

4-particle (extended) MHV scattering amplitudes. In addition to the chiral mass term,

we also include in the calculations a possible 3-scalar interaction, which has the same

dimension (∆ = 3) and R-symmetry quantum numbers as the fermion mass term. In

section 4 we describe the deformation of super twistor space that corresponds to adding

the chiral mass term, and we look for algebraic curves in the deformed space. There, we

define a natural extension of the notion of degree d = 1 curves for the deformed case; the

equations describing these curves contain quadratic terms. In section 5 we show that if

we set the 3-scalar coupling correctly, 4-particle (extended) MHV amplitudes are indeed

supported on these d = 1 algebraic curves. Furthermore, we find that the amplitudes are

given by an integral over the moduli space of d = 1 curves that is essentially the same as

the one for the massless case [3]; the only modification is the expression for the curve itself.

We conclude with a discussion in section 7. The appendices contain more technical details

about the Feynman rules in the presence of the unusual CPT-violating chiral mass terms.
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2. Chiral and anti-chiral fermion mass terms

We denote the negative helicity fermions by ψA
α , where α is a spinor index (α = 1, 2)

and A is an SU(4) R-symmetry index (A = 1, . . . , 4). We denote the positive helicity

fermions by ψ
α̇

A. The full N = 4 Super Yang-Mills Lagrangian is presented in appendix B,

for completeness. An anti-chiral mass term is MABψA
α ψαB and a chiral mass term is

MABψα̇Aψ
α̇
B . Here MAB = MBA and MAB = MBA are the corresponding mass matrices,

with 10 independent complex parameters each. We are going to add a chiral mass term to

the N = 4 SYM Lagrangian. This, of course, breaks CPT invariance, but the perturbative

Feynman diagrams are well-defined.

2.1 Free field equations of motion

In the presence of a chiral mass term, the negative helicity fermions acquire a left-chirality

(α̇) component. To see this, we write down the Dirac equations:

pαα̇ψ
α̇
A = 0, pαα̇ψA

α = MABψ
α̇
B . (2.1)

These equations imply that the momentum pαα̇ is lightlike. It can therefore be written as

a product of two spinors,

pαα̇ = λαλ̃α̇, (2.2)

as in the MAB = 0 case. A basis for the solutions of (2.1) is given by

ψ
α̇

A = λ̃α̇%̃A, ψA
α = λα%A + MABηα%̃B , (2.3)

where %̃A, %A are arbitrary parameters (scalars in the fundamental representation of the

R-symmetry group) and ηα is an arbitrary chiral spinor that is only required to satisfy

λαηα = 1. (2.4)

Once ηα is fixed, we can define helicity as follows: A solution with helicity (−) has ψ
α̇

A = 0

and ψαA = λα%A; a solution with helicity (+) has ψ
α̇
A = λ̃α̇%̃A and ψαA = MABηα%̃B.1

In Feynman diagrams, external lines of negative helicity fermions only have left-moving

ψαA components, but external lines of positive helicity fermions have both left-moving and

right-moving components. This is depicted in figure 2 and figure 3.

2.2 3-scalar interaction

The fermion mass term that we added in section 2.1 is a linear combination of operators

V ′
AB:= tr

{
ψα̇Aψ

α̇

B

}
(2.5)

of conformal dimension ∆ = 3, at lowest order in perturbation theory. These operators

are in the SU(4) (R-symmetry) irreducible representation 10 (i.e., a symmetric covariant

2-tensor). There is another set of operators of N = 4 super Yang-Mills with the same

1If we treat %, e% and η as continuous functions of λ and λ̃, the helicity can be alternatively defined as

(B.10). These two definitions turn out to be equivalent, as discussed in appendix B.3.
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quantum numbers, at lowest order in perturbation theory. They are cubic in the scalar

fields. Let us denote these scalar fields by

φI , I = 1, . . . , 6. (2.6)

Here I is an R-symmetry index in the fundamental representation of so(6) ' su(4). (For

convenience, we present some relevant identities in appendix A.2.)

The second set of operators of conformal dimension ∆ = 3 (at 0th order of perturbation

theory) and so(6) ' su(4) representation 10 can now be written as

V ′′
AB := ΓIJK

AB tr
{
φIφJ φK

}
, (2.7)

using the SU(4)-invariant symbol ΓIJK
AB , defined at the end of appendix A.2. This symbol

is anti-symmetric in the so(6) indices IJK and symmetric in the su(4) indices AB, and

it connects the representation 10 of so(6) (self-dual 3-tensors) to the representation 10 of

su(4).

There is a linear combination of V ′
AB and V ′′

AB that lies in a short supermultiplet. This

is the combination

VAB:=V ′
AB +

1

4
V ′′

AB, (2.8)

and its conformal dimension ∆ = 3 is exact. These operators can be obtained by acting

with two supersymmetry transformations on the chiral primary operators VIJ := tr{φIJ }.
(See [11][12] for more details.)

In the next section we will calculate 4-point tree level scattering amplitudes in the

presence of the perturbations discussed above. We will include both the 2-fermion and the

3-scalar perturbations in the combination

g2δL =
1

2
MABVAB , (2.9)

where g is the Yang-Mills coupling constant and the unperturbed Lagrangian is presented

in (B.1).

In [13] it was shown that twistor string theory contains a sector that is described by

N = 4 conformal supergravity (CSUGRA). Furthermore, tree-level amplitudes in CSUGRA

have been calculated in [14] using twistor string theory. The fields of CSUGRA couple to

the fields of N = 4 Super Yang-Mills (SYM). To linear order, each CSUGRA field couples

to an N = 4 SYM operator from the short supermultiplet of the chiral primary field VIJ .

For example, CSUGRA contains an SU(4) gauge field that couples to the R-symmetry

current of N = 4 SYM. CSUGRA also contain scalar fields in the representation 10 of

SU(4), which were denoted by E
AB

in [13]. To linear order, these fields couple to the

N = 4 SYM operators VAB, and the mass terms that we are considering here can be

interpreted as VEVs,

MAB ∼
〈
E

AB
〉

, (2.10)

as suggested in [1].
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3. Extended MHV amplitudes

In this section we will calculate several scattering amplitudes with a chiral mass term for

tree-level planar diagrams. The mass term mainly changes the Feynman diagram rules for

the fermions and 3-scalar interaction. We present the fermion propagators and external

wavefunctions in figure 1 – figure 3, and the 3-scalar vertex in figure 4. All the relevant

Feynman rules are given in appendix B.

When we label the helicity of the amplitude, we use the convention that all exter-

nal particles are incoming. For example A(+1,+1,−1,−1) represents the amplitude with

two incoming helicity +1 and two incoming helicity −1 gluons. On the other hand, for

convenience, the convention depicted in the figures (and discussed in appendix B) will

be that the helicity and momentum are all physical (2 incoming and 2 outgoing parti-

cles with their physical momenta and helicities).2 For the planar diagrams with external

particle indices i cyclically attached, all amplitudes include an overall group theory factor

tr[T1T2 · · · Ti · · ·Tn], which will be suppressed hereafter.

Maximally Helicity Violating (MHV) amplitudes at the tree level are originally de-

fined [15]–[17] as those satisfying the condition
∑

i(2hi − 2) = −8 with hi the helicities

of external legs (defined as all incoming). Since the chiral mass term is interpreted as a

VEV of a spacetime conformal supergravity field E
AB

(see (2.10)) we can think of the am-

plitudes with n external legs that contain the mass parameter at order O(Mk) as coming

from diagrams with (n + k) legs, of which k legs correspond to a background CSUGRA

field E
AB

. The helicity of this field is 0, and therefore mass-deformed SYM diagrams

at order O(Mk) that satisfy
∑

i(2hi − 2) = −8 + 2k correpond to MHV diagrams in

CSUGRA. We can therefore generalize the term “MHV” to “extended MHV” to describe

those diagrams at order O(Mk) that satisfy
∑

i(2hi − 2) = −8 + 2k.3 The holomorphic

structure of generalized MHV amplitudes calculated in this section will be discussed in

section 5.

We will now present the results of the calculation of various (extended) MHV ampli-

tudes. The Feynman diagrams and the detailed calculation are shown in appendix C for

interested readers. We begin with MAB-independent contribution to the MHV amplitudes.

These diagrams are the same as those of the undeformed theory, and were calculated in

[15][3] with external gluons and in [18][19] with external gluinos. We present them here for

completeness, featuring the use of the spinor notation.

2This difference in conventions corresponds to replacing pµ → −pµ, or λ → iλ and λ̃ → iλ̃ for the

outgoing particles. This does not affect our result because we scale (λi1, λi2) to (1, Zi = λi2/λi1) in the end.

However, the form of the momentum conservation condition depends on the convention: p1+ · · ·+p4 = 0 for

“incoming” momenta while p1 + p2 = p3 + p4 for “physical” momenta. The former leads to [1,3]
[1,4]

= − 〈2,4〉
〈2,3〉

,
[2,1]
[2,3]

= − 〈4,3〉
〈4,1〉

and so on, while the latter gives [1,3]
[1,4]

= − 〈2,4〉
〈2,3〉

and [2,1]
[2,3]

= 〈4,3〉
〈4,1〉

(an extra minus sign may

arise).
3At tree level, however, we only have O(M0) and O(M); the amplitudes at higher orders of M all vanish.

This can be understood by (5.7), in which M gives 3 θ2’s but the integrand needs to have exactly 4 θ2 to

yield nonzero result.
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3.1 MHV amplitudes (extended MHV at O(M0))

• 4-gluon scattering amplitude:4

AO(M0)(+1,+1,−1,−1) =
ig2

2

〈3, 4〉4
∏4

i=1〈i, i + 1〉
. (3.1)

• 2-gluon and 2-fermion scattering amplitude:

AO(M0)(+1/2,+1,−1,−1/2) = ig2%A
4 %̃1A

〈3, 4〉3〈1, 3〉
∏4

i=1〈i, i + 1〉
. (3.2)

• 4-fermion scattering amplitude:

AO(M0)(+1/2,+1/2,−1/2,−1/2)

=
2ig2〈3, 4〉2

∏4
i=1〈i, i + 1〉

{
%A
4 %̃1A%̃2B%B

3 〈1, 3〉〈2, 4〉 + %A
3 %̃1A%̃2B%B

4 〈2, 3〉〈4, 1〉
}

, (3.3)

• 2-fermion and 2-scalar scattering amplitude:

AO(M0)(+1/2, 0, 0,−1/2)

=
2ig2〈3, 4〉〈2, 4〉
∏4

i=1〈i, i + 1〉

{
1

2
%A
4 %̃1AϕBC

2 ϕ3BC 〈1, 2〉〈3, 4〉 + %B
4 %̃1AϕCA

2 ϕ3BC 〈2, 3〉〈4, 1〉
}

,

(3.4)

where ϕ2 and ϕ3 are wavefunctions for the external scalars.

3.2 Extended MHV amplitudes at O(M)

• 2-gluon and 2-fermion scattering amplitude:

AO(M)(+1/2,+1,−1,+1/2) =
ig2MAB%̃1A%̃4B

2

〈3, 1〉〈3, 4〉〈4, 1〉
∏4

i=1〈i, i + 1〉
. (3.5)

• 4-fermion scattering amplitude:

AO(M)(+1/2,+1/2,−1/2,+1/2)

=
2ig2

∏4
1〈i, i + 1〉

{
%̃1AMAB %̃2B%C

3 %̃4C〈1, 2〉〈2, 3〉〈3, 1〉

+%̃1A%A
3 %̃2BMBD%̃4D〈2, 4〉〈2, 3〉〈3, 4〉 + %̃2B%B

3 %̃1AMAD%̃4D〈4, 1〉〈1, 3〉〈3, 4〉
}

.

(3.6)

4The notations 〈i, j〉 and [i, j] are short for 〈λi, λj〉 and [λ̃i, λ̃j ] respectively. We also set λn+1 ≡ λ1 for

n external legs.
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• 2-fermion and 2-scalar scattering amplitude:

AO(M)(+1/2, 0, 0,+1/2)

=
ig2

∏4
i=1〈i, i + 1〉

{
〈2, 3〉〈3, 4〉〈4, 2〉%̃4C MCBϕ3BDϕDA

2 %̃1A

+〈1, 2〉〈2, 3〉〈3, 1〉%̃4B ϕBD
3 ϕ2DAMAD%̃1D

1

2
(〈1, 2〉〈2, 3〉〈3, 4〉 + 〈1, 2〉〈1, 4〉〈3, 4〉) %̃4BMBC %̃1CϕB′D′

3 ϕ2B′D′

}
. (3.7)

4. Chiral B-model mass terms

We now compare the amplitudes calculated in section 3 with an integral over the moduli

space of holomorphic curves in twistor space. Let us begin by reviewing some facts about

super twistor space [3]. We denote the homogeneous coordinates of the B-model target

space CP
3|4 \ CP

1|4 by

Z1 = λ1, Z2 = λ2, Z3 = µ1̇, Z4 = µ2̇, Θ1, . . . ,Θ4.

It is convenient to define the two patches

U :={Z1 6= 0}; U ′:={Z2 6= 0}. (4.1)

On the patch U , the set

Z:=
Z2

Z1
, X:=

Z3

Z1
, Y :=

Z4

Z1
, ΨA:=

ΘA

Z1
,

is a good coordinate system. On U ′,

Z ′:=
Z1

Z2
=

1

Z
, X ′:=

Z3

Z2
=

X

Z
, Y ′:=

Z4

Z2
=

Y

Z
, Ψ′A:=

ΘA

Z2
=

1

Z
ΨA, (4.2)

is a good coordinate system.

Given a meromorphic function

A(X,Y,Z,Ψ1, . . . ,Ψ4) = A + ΨAχA + 1
2ΨAΨBφAB

+1
6εABCDΨAΨBΨC χ̃D + 1

24εABCDΨAΨBΨCΨDG, (4.3)

where A,χA, φAB , χ̃D, G are holomorphic functions of X,Y,Z with possible poles at Z = 0

and Z = ∞, we can construct an on-shell wave-function of the N = 4 fermion fields by

(see appendix of [3]),

ψαA(x) =
1

2πi

∮

C

λαχ̃A(x11̇ + x21̇z, x12̇ + x22̇z, z)dz, λ1 ≡ 1, λ2 ≡ z,

ψ
α̇

A(x) =
1

2πi

∮

C

∂

∂x1α̇
χA(x11̇ + x21̇z, x12̇ + x22̇z, z)dz.

(4.4)

The contour integrals are performed on, say, a circle around the origin. There are also

similar expressions for the bosons A,φAB , G.
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We have a lot of freedom in choosing the holomorphic functions χ̃A and χA, and it

is only their singular behavior at z = 0 and z = ∞ that is important, as we will now

review. We can deform the path C of the contour integrals (4.4) to a small loop around

the origin z = 0. This shows that these integrals are only sensitive to the singular behavior

of χ̃A and χA at Z = 0. Adding to χ̃A or χA a holomorphic function of X,Y,Z that is

nonsingular for all Z 6= ∞ will not affect the physical wave-functions. Similarly, we can

perform the integrals (4.4) in the coordinate system X ′, Y ′, Z ′. In these coordinates we set

the superfield A′ to

A′(X ′, Y ′, Z ′,Ψ′1, . . . ,Ψ′4) = A(X,Y,Z,Ψ1, . . . ,Ψ4).

The components of this field are

A′ = A′ + Ψ′Aχ′
A + 1

2Ψ′AΨ′Bφ′
AB + 1

6εABCDΨ′AΨ′BΨ′C χ̃′D + 1
24εABCDΨ′AΨ′BΨ′CΨ′DG′,

Thus, the transformation rules for the fermionic components are

χ̃′A(X ′, Y ′, Z ′) =
1

Z ′3 χ̃A(
X ′

Z ′ ,
Y ′

Z ′ ,
1

Z ′ ), χ′
A(X ′, Y ′, Z ′) =

1

Z ′χA(
X ′

Z ′ ,
Y ′

Z ′ ,
1

Z ′ ).

In these variables, the contour integrals (4.4) can be written as

ψαA(x) = − 1

2πi

∮

C

λ′α 1

z′3
χ̃′A(x11̇z

′ + x21̇, x12̇z
′ + x22̇, z

′)dz′, λ′1 ≡ z′, λ′2 ≡ 1,

ψ
α̇

A(x) = − 1

2πi

∮

C

1

z′
∂

∂x1α̇
χ′

A(x11̇z
′ + x21̇, x12̇z

′ + x22̇, z
′)dz′

= − 1

2πi

∮

C

∂

∂x2α̇
χ′

A(x11̇z
′ + x21̇, x12̇z

′ + x22̇, z
′)dz′.

(4.5)

We require that the fields χ̃′A(X ′, Y ′, Z ′) and χ′
A(X ′, Y ′, Z ′) be holomorphic in X ′, Y ′, Z ′ for

all finite X ′, Y ′ and all nonzero and finite Z ′. But we allow singularities at Z ′ = 0. In fact,

similarly to the case of (4.4), the contour integrals are only sensitive to the singular behavior

of the fields at Z ′ = 0. Thus, adding to A′ a holomorphic function of X ′, Y ′, Z ′,Ψ′1, . . . ,Ψ′4

that is nonsingular at Z ′ = 0 will not affect the physical wavefunctions.

To summarize, there is a freedom in the choice of A,

A(X,Y,Z,Ψ) ∼ A(X,Y,Z,Ψ) + A0(X,Y,Z,Ψ) + A∞(X,Y,Z,Ψ), (4.6)

where A0 is an arbitrary meromorphic wavefunction that is holomorphic at Z 6= ∞ (in-

cluding Z = 0), and A∞ is an arbitrary meromorphic wavefunction that is holomorphic at

Z 6= 0 (including Z = ∞). To check the holomorphicity requirement for A∞ one has to

know what the good coordinates near Z = ∞ are. In the undeformed case, these are given

by (4.2).

In the next subsection we will reverse this logic and find a deformation of the complex

structure that corresponds to a chiral mass term. The idea is as follows. First we find

a solution to the Dirac equation (2.1) in a form that augments (4.4). It will be given in
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terms of meromorphic functions on twistor space that we will denote again by χ̃A and χA.

Then, we define a superfield similarly to (4.3), and we look for an equivalence in the form

(4.6). Since (4.4) will be augmented, invariance of the physical wavefunctions ψαA and ψ
α̇

A

under (4.6) will require a different definition of “holomorphic at Z = ∞.” This will yield an

augmentation of the transition functions (4.2), which will give us the desired deformation

of the complex structure. Let’s move on to the details!

4.1 Super-complex structure deformation

As explained in [1], a chiral mass term can be incorporated into the B-model twistor

string theory as a certain supercomplex structure deformation. General deformations of

the complex structure of weighted projective superspaces (and other holomorphic vector

bundles) were studied in [20]-[23].

A supercomplex structure deformation can be described by changing the transition

functions (4.2). The new transition functions that we need turned out to be

Z ′ =
1

Z
, X ′ =

X

Z
, Y ′ =

Y

Z
, Ψ′A =

1

Z
ΨA +

1

6Z2
MABεBCDEΨCΨDΨE. (4.7)

Let us recall how this deformation was derived in [1]. We start with the free-field Dirac

equations (2.1). The generic solution was given in (2.3). There, %̃A and %A are both

functions of λ and λ̃, but we can Fourier transform them with respect to λ̃ to obtain

functions of twistor space that we denote by χA and χ̃A. We can then write the solution

to the Dirac equation (2.1) as

ψA
α (x) =

1

2πi

∮

C

[
λαχ̃A(z, x11̇+x21̇z, x12̇+x22̇z) + MABηαχB(z, x11̇+x21̇z, x12̇+x22̇z)

]
dz,

ψ
α̇

A(x) =
1

2πi

∮

C

∂

∂x1α̇
χA(z, x11̇ + x21̇z, x12̇ + x22̇z)dz,

(4.8)

where

(λ1, λ2) ≡ (1, z), (η1, η2) ≡ (1, 0).

[Equations (4.8) can be compared to (4.4) in the massless case.] We can collect χA and χ̃A

in a superfield as in (4.3). Let us see what would be the analog of the equivalence relation

(4.6). Obviously, ψ
α̇

A and ψαA in (4.8) do not change if we add an arbitrary holomorphic

function at z 6= ∞ to either χ̃A or χA or both. Thus, the equivalence A ∼ A + A0 is the

same as in the massless case (4.6).

Things change, however, for A∞ in (4.6). The coordinates X ′, Y ′, Z ′ from (4.2) are no

longer good coordinates near Z = ∞. If they were, we could define

χ′
A(Z,X, Y ) =

1

Z
χA(

1

Z
,
X

Z
,
Y

Z
), χ̃′′A(Z,X, Y ) =

1

Z3
χ̃A(

1

Z
,
X

Z
,
Y

Z
), (4.9)

(we use χ̃′′A because it is only a temporary expression and we will modify it below) to

change, and we could write the integrals in (4.8) as follows. We could substitute (4.9) in

– 10 –
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the second equation of (4.8) to get

ψ
α̇

A(x) =
1

2πi

∮

C

1

z

∂

∂x1α̇
χA(

1

z
,
x11̇

z
+ x21̇,

x12̇

z
+ x22̇)dz

= − 1

2πi

∮

C

∂

∂x2α̇
χA(z′, x11̇z

′ + x21̇, x12̇z
′ + x22̇)dz′

(4.10)

This last integrand is regular near z′ = 0 and therefore vanishes if χA is holomorphic near

z′ = 0, as in the massless case. However, there would be a problem with the integrand for

ψ
α̇
A. Substituting (4.9) in the first equation of (4.8), we would get

ψA
α (x) =

1

2πi

∮

C

[
λα

1

z3
χ̃′′A

(
1

z
,
x11̇

z
+ x21̇,

x12̇

z
+ x22̇

)
+

+
1

z
MABηαχ′

B

(
1

z
,
x11̇

z
+ x21̇,

x12̇

z
+ x22̇

)]
dz

= − 1

2πi

∮

C

[
λαz′χ̃′′A(z′, x11̇z

′ + x21̇, x12̇z
′ + x22̇) +

+
1

z′
MABηαχ′

B(z′, x11̇z
′ + x21̇, x12̇z

′ + x22̇)

]
dz′ (4.11)

If χ̃′′A is regular at z′ = ∞, the first term in the integrand is regular, because for α = 2 we

have λα = 1 and for α = 1 we have λα = −z = −1/z′. However, the second term may have

a pole for α = 1 because η1 = 1. The integrand of (4.11) therefore does not necessarily

vanish. This shows that (4.9) is incompatible with (4.6). We can fix this problem by a

slight modification of (4.9). We define instead,

χ′
A(Z,X, Y ) =

1

Z
χA

(
1

Z
,
X

Z
,
Y

Z

)
,

χ̃′A(Z,X, Y ) =
1

Z3
χ̃A

(
1

Z
,
X

Z
,
Y

Z

)
− 1

Z2
MABχA

(
1

Z
,
X

Z
,
Y

Z

)
. (4.12)

This can be inverted to

χA(Z,X, Y ) =
1

Z
χ′

A

(
1

Z
,
X

Z
,
Y

Z

)
,

χ̃A(Z,X, Y ) =
1

Z3
χ̃′A

(
1

Z
,
X

Z
,
Y

Z

)
+

1

Z2
MABχ′

A

(
1

Z
,
X

Z
,
Y

Z

)
. (4.13)

Then

ψA
α (x) =

1

2πi

∮

C

[
λα

1

z3
χ̃′A(

1

z
,
x11̇

z
+ x21̇,

x12̇

z
+ x22̇)

+
1

z
MAB(ηα +

1

z
λα)χ′

B(
1

z
,
x11̇

z
+ x21̇,

x12̇

z
+ x22̇)

]
dz

= − 1

2πi

∮

C

[
λαz′χ̃′A(z′, x11̇z

′ + x21̇, x12̇z
′ + x22̇)

+ MAB(
1

z′
ηα + λα)χB(z′, x11̇z

′ + x21̇, x12̇z
′ + x22̇)

]
dz′

(4.14)
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Now the integrand is regular at z′ = ∞ because

1

z′
η1 + λ1

z′→∞−→ 0,
1

z′
η2 + λ2

z′→∞−→ 1.

Thus, the field redefinition (4.12) is compatible with the equivalence relation (4.6). These

redefinitions (4.12) are the Ψ and ΨΨΨ components of the superfield expression

A′(X ′, Y ′, Z ′,Ψ′A) = A(X,Y,Z,ΨA),

where the coordinates X ′, Y ′, Z ′,Ψ′A are defined in (4.7).

4.2 A note on the anti-chiral mass term

One might wonder whether we could derive a similar modification of the complex structure

of super twistor space for the anti-chiral mass term deformation MABψA
α ψαB . In this case,

instead of the Dirac equations (2.1) we get

pαα̇ψ
α̇

A = MABψB
α , pαα̇ψαA = 0.

Instead of (4.8), the solution is now given by

ψA
α (x) =

1

2πi

∮

C

λαχ̃A(z, x11̇ + x21̇z, x12̇ + x22̇z)
]
dz,

ψ
α̇
A(x) =

1

2πi

∮

C

[
∂

∂x1α̇
χA(z, x11̇ + x21̇z, x12̇ + x22̇z)+

+ MAB η̂α̇χ̃B(z, x11̇ + x21̇z, x12̇ + x22̇z)

]
dz.

(4.15)

Here η̂α̇ has to satisfy

λ̃α̇η̂α̇ = 1.

In twistor space, however, we identify λ̃α̇ with a differential operator

λ̃α̇ ↔ i
∂

∂µα̇
.

We can therefore set η̂α̇ to be the following integral operator

η̂1̇f(z, µ1̇, µ2̇):=0, η̂2̇f(z, µ1̇, µ2̇):= − i

∫ µ2̇

0
f(z, µ1̇, s)ds, (4.16)

where f is an arbitrary holomorphic function. Now the field redefinition (4.9) is good

enough:

ψ
α̇

A(x) =
1

2πi

∮

C

[ ∂

∂x1α̇
χA(z, x11̇ + x21̇z, x12̇ + x22̇z)+

+ MAB η̂α̇χ̃B(z, x11̇ + x21̇z, x12̇ + x22̇z)
]
dz

=
1

2πi

∮

C

[1

z

∂

∂x1α̇
χ′

A(
1

z
,
1

z
x11̇ + x21̇,

1

z
x12̇ + x22̇)

+
1

z3
MAB η̂α̇χ̃′′B(

1

z
,
1

z
x11̇ + x21̇,

1

z
x12̇ + x22̇)

]
dz

= − 1

2πi

∮

C

[
z′

∂

∂x1α̇
χ′

A(z′, x11̇z
′ + x21̇, x12̇z

′ + x22̇)

+ z′3MAB η̂α̇χ̃′′B(z′, x11̇z
′ + x21̇, x12̇z

′ + x22̇)
]dz′

z′2

– 12 –
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Using (4.16) we see that for α̇ = 1̇ the integrand is regular at z′ = 0. For α̇ = 2̇ we get

ψ
2̇
A(x) = − 1

2πi

∮

C

[
z′2

∂

∂x22̇

χ′
A(z′, x11̇z

′ + x21̇, x12̇z
′ + x22̇)

+ z′3MAB

∫ x12̇z′+x22̇

0
χ̃′B(z′, x11̇z

′ + x21̇, s
′)

ds′

z′

]
dz′

z′2
,

where we used the definition (4.16) for α̇ = 2̇, and we changed variables from s to s′ = z′s
in the integral that defines η̂2̇. We now see that the integrand in (4.17) is regular at z′ = ∞.

Therefore, no deformation of complex structure is needed! However, it was suggested in

[1], that the anti-chiral mass parameter MAB enters in a phase of D1-instanton terms.

The argument was based on a proposed indentification of MAB with a VEV of one of the

conformal supergravity fields discussed in [13]. We will not explore this further in the

present paper.

4.3 Deformed holomorphic curve

In the undeformed twistor space, a curve of degree d = 1 in CP
3|4 is given by (see equation

(4.46) of [3]) a set of linear equations:

X = −x11̇ − x21̇Z, Y = −x12̇ − x22̇Z, ΨA = −θA
1 − θA

2 Z, (4.17)

where xαα̇ and θA
α are moduli. On the patch U ′ [defined in (4.1)] we can write (4.17) as

X ′ = −x11̇Z
′ − x21̇, Y ′ = −x12̇Z

′ − x22̇, ΨA = −θA
1 Z ′ − θA

2 . (4.18)

After the deformation (4.7), equations (4.18) no longer hold. Instead, equations (4.17)

imply

Ψ′A =
1

Z
ΨA +

1

6Z2
MABεBCDEΨCΨDΨE

= −θA
1 Z ′ − θA

2 − 1

6Z ′M
ABεBCDE(θC

1 Z ′ + θC
2 )(θD

1 Z ′ + θD
2 )(θE

1 Z ′ + θE
2 )

= −1

6
MABεBCDEθC

1 θD
1 θE

1 Z ′2 −
(

θA
1 +

1

2
MABεBCDEθC

1 θD
1 θE

2

)
Z ′

−
(

θA
2 +

1

2
MABεBCDEθC

1 θD
2 θE

2

)
− 1

2Z ′M
ABεBCDEθC

2 θD
2 θE

2 .

Unless the last term is zero, this is not an acceptable holomorphic curve. We can cancel

the last term by slightly modifying equations (4.17) in the patch U as follows. We set

ΨA = −θA
1 − θA

2 Z +
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2. (4.19)

Then

Ψ′A =
1

Z
ΨA +

1

6Z2
MABεBCDEΨCΨDΨE

= −1

6
MABεBCDEθC

1 θD
1 θE

1 Z ′2 −
(

θA
1 +

1

2
MABεBCDEθC

1 θD
1 θE

2

)
Z ′
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−
(

θA
2 +

1

2
MABεBCDEθC

1 θD
2 θE

2 +
1

2
MABεBCDEMEF εFGHIθ

C
1 θD

1 θG
2 θH

2 θI
2

)

The poles in Z ′ vanish — the terms proportional to 1/Z ′2 vanishes because there are

too many θ2’s, and the terms proportional to 1/Z ′ vanish because the symmetric mass

parameter MAB is coupled with the antisymmetric ε−tensor. In the next section we will

express the scattering amplitudes calculated in section 3 as an integral over supertwistor

space with support on the deformed holomorphic curve that we just found:

X = −x11̇ − x21̇Z, Y = −x12̇ − x22̇Z,

ΨA = −θA
1 − θA

2 Z +
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2.
(4.20)

5. Twistor amplitudes with mass terms

As explained in [3], a supersymmetric Yang-Mills amplitude A(fi) can be obtained from

a twistor scattering amplitude Ã(λα
i , µα̇

i ,ΨA
i ) by multiplying by the appropriate exter-

nal wavefunctions fi(λ
α
i , µα̇

i ,ΨA
i ) and integrating out all the supertwistor coordinates. In

particular, the tree-level MHV amplitudes for 4 external particles (without the mass de-

formation) can be written as

Ã(λα
i , µiα̇,ΨA

i ) = 2ig2

∫
d4x d8θA

a

4∏

i=1

δ2(µiα̇ + xαα̇λα
i )δ4(ΨA

i + θA
α λα

i )
1

∏4
i=1〈i, i + 1〉

,

A(fi) =

4∏

i=1

∫
d2λα

i d2µiα̇d4ΨA
i fi(λ

α
i , µiα̇,ΨA

i )Ã(λα
i , µα̇

i ,ΨA
i ). (5.1)

The δ-functions in the integral imply that the twistor amplitude vanishes unless the external

points (λα
i , µiα̇,ΨA

i ) all lie in the same holomorphic curve described by

µiα̇ + xαα̇λα
i = 0, ΨA

i + θA
α λα

i = 0, (5.2)

for some suitable (xαα̇, θA
α ).

In the presence of our mass term the complex structure is deformed and, according to

(4.20), the holomorphic curve is changed to

µiα̇ + xαα̇λα
i = 0, ΨA

i + θA
1 + θA

2 Zi −
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i = 0. (5.3)

We claim that (5.1) is modified to

Ã(λ
′α
i , µ′

iα̇,ΨA
i ) = 2ig2

∫
d4x d8θA

a

1
∏4

i=1〈λ′
i, λ̃

′
i+1〉

×
4∏

i=1

δ2
(
µ′

iα̇+xαα̇λ
′α
i

)
δ4

(
ΨA

i + θA
1 +θA

2 Z ′
i−

1

6
MABεBCDEθC

2 θD
2 θE

2 Z
′2
i

)
,

A(fi) =

4∏

i=1

∫
d2λ

′α
i d2µ′

iα̇d4ΨA
i fi(λ

′α
i , µ′

iα̇,ΨA
i )Ã(λ

′α
i , µ′

iα̇,ΨA
i ) (5.4)

for all “extended MHV” amplitudes (defined in section 3) of 4 external particles.
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In particular, if the external function is in a momentum state, fi is of the form of a

Fourier transform of a δ-function peaked at some fixed momentum; i.e.,

f
(pi=λiλ̃i)
i (λ

′α
i , µ′

iα̇,ΨA
i ) = fi(Ψ

A
i )

1

(2π)4

∫
d2λ̃

′α̇
i δ2(λα

i − λ
′α
i )δ2(λ̃α̇

i − λ̃
′α̇
i ) exp(iλ̃

′α̇
i µ′

iα̇),

(5.5)

where pαα̇
i = λα

i λ̃α̇
i are the momenta for external particles. The integral over bosonic

coordinates in (5.4) yields

1

(2π)4

∫
d2λ

′α
i d2µ′

iα̇

∫
d4x g(λ

′α
i ) δ2(µ′

iα̇ + xαα̇λ
′α
i )

×
∫

d2λ̃
′α̇
i δ2(λα

i − λ
′α
i )δ2(λ̃α̇

i − λ̃
′α̇
i ) exp(iλ̃

′α̇
i µ′

iα̇)

=
1

(2π)4

∫
d4x exp(−i

∑

i

xαα̇λα
i λ̃α̇

i ) g(λα
i ) = δ4(

∑

i

pi) g(λα
i ), (5.6)

where g(λ
′α
i ) denotes the λ′-dependence of Ã(λ

′α
i , µ′

iα̇,ΨA
i ) apart from δ2(µ′

iα̇ +xαα̇λ
′α
i ) and

the result gives rise the momentum conservation factor. Consequently, (5.4) reduces to

A(fi) = 2ig2δ4

(
∑

i

pi

) ∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4

(
ΨA

i + θA
1 + θA

2 Zi −
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i

)

× 1
∏4

i=1〈i, i + 1〉
f1(Ψ

A
1 )f2(Ψ

A
2 )f3(Ψ

A
3 )f4(Ψ

A
4 ), (5.7)

where the external function fi(Ψ
A
i ) is given by A, ΨAχA, 1

2ΨAΨBφAB , 1
6εABCDΨAΨBΨC χ̃D

and 1
24εABCDΨAΨBΨCΨDG for the external particle with spin +1, +1/2, 0, −1/2 and −1

respectively.

In the following, we compute various amplitudes in momentum space by (5.7) (ignore

the momentum conservation factor) and compare them with the results we have calculated

by Feynman rules in section 3, with the identification: A = G = 1√
2
, χ = %̃, χ̃ = % and

φ = ϕ. In all cases, both results agree with each other and we thus verify the claim in (5.4).

Finally, in section 5.2.4, we study a simple but interesting case — the 3-scalar interaction.

5.1 MHV amplitudes (extended MHV at O(M0))

The Grassmanian integral over d8θA
a in (5.7) gives a nonzero result only if the integrand

has exactly 8 Grassman θ’s. In the cases of MHV amplitudes, the external functions

fi(Ψ
A
i ) altogether have 8 fermionic coordinates Ψ’s, each of which gives 1 or 3 θ’s by the

δ-function. The mass term in (5.3) is of the order O(θ3) and thus has too many θ’s to

contribute in (5.7) for MHV amplitudes. As a result, the mass deformation does not affect

the MHV amplitudes and the amplitudes are the same as if no mass deformation. In

the following, we compute various MHV amplitudes by (5.7) and compare them with the

results in section 3.1.
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5.1.1 AO(M0)(+1,+1,−1,−1)

The external functions for this case are A1, A2,
1
24εABCDΨAΨBΨCΨDG3 and 1

24εABCD ×
ΨAΨBΨCΨDG4. The integral (5.7) gives the amplitude

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4

(
ΨA

i + θA
1 + θA

2 Zi −
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i

)

× 1
∏4

i=1〈i, i + 1〉
(A1)(A2)

(
1

24
εABCDΨA

3 ΨB
3 ΨC

3 ΨD
3 G3

)

×
(

1

24
εA′B′C′D′ΨA′

3 ΨB′

3 ΨC′

3 ΨD′

3 G4

)

= 2ig2 A1A2G3G4∏4
i=1〈i, i + 1〉

(Z3 − Z4)
4 = 2ig2 A1A2G3G4∏4

i=1〈i, i + 1〉
〈3, 4〉4, (5.8)

which agrees with (3.1).

5.1.2 AO(M0)(+1/2,+1,−1,−1/2)

The external wavefunctions are ΨAχA, A2,
1
24εABCDΨAΨBΨCΨDG3 and 1

6εABCDΨAΨB ×
ΨC χ̃D. The amplitude is

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4

(
ΨA

i +θA
1 +θA

2 Zi−
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i

)

× 1
∏4

1〈i, i + 1〉
(
ΨA

1 χ1A

)
(A2)

(
1

24
εA′B′C′D′ΨA′

3 ΨB′

3 ΨC′

3 ΨD′

3 G3

)

×
(

1

6
εA′′B′′C′′D′′ΨA′′

4 ΨB′′

4 ΨC′′

4 χ̃D′′

4

)

= −2ig2

∫
d8θA

a

χ1AA2G3χ̃
D′′

4∏4
1〈i, i + 1〉

7(θA
1 + θA

2 Z1 + · · · ) 1

24
εA′B′C′D′(θA′

1 + θA′

2 Z3 + · · · )

× (θB′

1 + θB′

2 Z3 + · · · )(θC′

1 + θC′

2 Z3 + · · · )(θD′

1 + θD′

2 Z3 + · · · )

× 1

6
εA′′B′′C′′D′′(θA′′

1 + θA′′

2 Z4 + · · · )(θB′′

1 + θB′′

2 Z4 + · · · )(θC′′

1 + θC′′

2 Z4 + · · · )

= 2ig2 (Z3 − Z1)(Z4 − Z3)
3

∏4
1〈i, i + 1〉

χ̃A
4 χ1AA2G3 = 2ig2 〈1, 3〉〈3, 4〉3∏4

1〈i, i + 1〉
χ̃A

4 χ1AA2G3, (5.9)

where · · · represents the mass-deformed part of the holomorphic curve. The result agrees

with (3.2)

5.1.3 AO(M0)(+1/2,+1/2,−1/2,−1/2)

The external wavefunctions for this amplitude are ΨAχA, ΨAχA, 1
24εABCDΨAΨBΨCΨDG3

and 1
24εABCDΨAΨBΨCΨDG3. The amplitude is

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4

(
ΨA

i +θA
1 +θA

2 Zi−
1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i

)
1

∏4
1〈i, i + 1〉
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×(ΨA
1 χ1A)(ΨA′

2 χ2A′)

(
1

6
εA′′B′′C′′D′′ΨA′′

3 ΨB′′

3 ΨC′′

3 χ̃D′′

3

)

(
1

24
εA

′′′
B

′′′
C

′′′
D

′′′ΨA
′′′

ΨB
′′′

ΨC
′′′

ΨD
′′′

G3

)

=
2ig2〈3, 4〉2
∏4

1〈i, i + 1〉

{
χ̃4

Aχ1Aχ2A′χ̃3
A′

[
(Z3 − Z1)Z

3
4 + (Z1Z2 − Z2Z3 − 2Z2

3 − 2Z1Z3)Z
2
4

+(Z3
3 − Z1Z

2
3 − 2Z2Z

2
3 − 2Z1Z2Z3)Z4 + Z1Z2Z

2
3 − Z2Z

3
3

]

+χ̃3
Aχ1Aχ2A′ χ̃4

A′
[
(Z2 − Z3)Z

3
4 + (Z1Z3 − Z1Z2 − 2Z2

3 − 2Z2Z3)Z
2
4

+(−Z3
3 + Z2Z

2
3 − 2Z1Z

2
3 + 2Z1Z2Z3)Z4 − Z1Z2Z

3
3 + Z1Z

3
3

]}

=
2ig2〈3, 4〉2
∏4

1〈i, i + 1〉

{
χ̃4

Aχ1Aχ2A′χ̃3
A′〈1, 3〉〈2, 4〉 + χ̃3

Aχ1Aχ2A′χ̃4
A′〈2, 3〉〈4, 1〉

}
, (5.10)

which agrees with (3.3).

5.1.4 AO(M0)(+1/2, 0, 0,−1/2)

The external wavefunctions are ΨA
1 χ1A, 1

2!Ψ
A
2 ΨB

2 φ2AB , 1
2!Ψ

A
3 ΨB

3 φ3AB and 1
3!εABCDΨA

4 ×
ΨB

4 ΨC
4 χ̃D

4 . The amplitude is

2ig2

∫ 4∏

i

d4ΨA

i

∫
d8θA

a

4∏

i=1

δ4(ΨA

i + θA

1 + θA

2 Zi −
1

6
MABεBCDEθC

2 θD

2 θE

2 Z2
i )

1
∏4

i=1〈i, i + 1〉

×
(
ΨA

1 χ1A

) (
1

2!
ΨA

′

2 ΨB
′

2 φ2A′B′

) (
1

2!
ΨA

′′

3 ΨB
′′

3 φ3A′′B′′

) (
1

3!
εA′′′B′′′C′′′D′′′ΨA

′′′

4 ΨB
′′′

4 ΨC
′′′

4 χ̃D
′′′

4

)

=
2ig2

∏4
i=1〈i, i + 1〉

{
χ̃A

′

4 φ3A′B′φB
′
A

2 χ1A(−Z3Z
3
4 + Z1Z3Z

2
4 + Z2

3Z2
4 + 2Z2Z3Z

2
4 + 2Z1Z2Z3Z4

+Z1Z
2
2Z4 + Z2

2Z3Z4 − Z1Z
2
2Z3) + χ̃A

′

4 φ2A′B′φB
′
A

3 χ1A(−Z2Z
3
4 + Z1Z2Z

2
4 + Z2

2Z2
4

+2Z2Z3Z
2
4 + 2Z1Z2Z3Z4 + Z1Z

2
3Z4 + Z2Z

2
3Z4 − Z1Z2Z

2
3 )

+
1

2
χ̃A

4 χ1Aφ3A
′
B

′

φ2A′B′(−Z1Z
3
4 − Z2

2Z2
3 + 2Z1Z3Z

2
4 + 2Z1Z2Z

2
4 + 2Z2Z

2
3Z4 + 2Z2

2Z3Z4)
}

=
2ig2〈3, 4〉〈2, 4〉
∏4

i=1〈i, i + 1〉

{1

2
χ̃A

4 χ1AφA
′
B

′

3 φ2A′B′〈1, 2〉〈3, 4〉 + χ̃A
′

4 φ3A′B′φB
′
A

2 χ1A〈2, 3〉〈4, 1〉
}
, (5.11)

where the identities (A.15) and (A.17) are used. The result agrees with (3.4).

5.2 Extended MHV amplitudes at O(M)

In the cases of extended MHV amplitudes at O(M), the external functions fi(Ψ
A
i ) alto-

gether have 6 fermionic coordinates Ψ’s. In order to have 8 θ’s for the integrand in (5.7),

the mass term has to contribute exactly once. Therefore, the resulting amplitudes are of

the order O(M).

5.2.1 AO(M)(+1/2,+1,−1,+1/2)

The external wavefunctions are ΨA
1 χ1A, A2,

1
24εABCDΨA

3 ΨA
3 ΨA

3 ΨD
3 G3, and ΨA

4 χ4A. The
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amplitude by (5.7) is thus

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4(ΨA
i + θA

1 + θA
2 Zi −

1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i )

× 1
∏4

i=1〈i, i + 1〉
(ΨA

1 χ1A)(A2)(
1

24
εA′′B′′C′′D′′ΨA′′

3 ΨB′′

3 ΨC′′

3 ΨD′′

3 G3)(Ψ
A′′′

4 χ4A′′′)

= −2ig2

∫
d8θA

a

(Z1Z4 + Z2
3 − Z3Z4 − Z3Z1)(Z1 − Z4)∏4

i=1〈i, i + 1〉

× MAA′′′
χ1AA2G3χ4A′′′

1

36
εA′′FGHθA′

1 θF
1 θG

1 θH
1 εIJKLθI

2θ
J
2 θK

2 θL
2

= 2ig2 〈3, 1〉〈3, 4〉〈4, 1〉∏4
i=1〈i, i + 1〉

χ4BMBAχ1AG3A2. (5.12)

The result concurs with (3.5).

5.2.2 AO(M)(+1/2,+1/2,−1/2,+1/2)

The external wavefunctions are ΨA
1 χ1A, ΨA

2 χ2A, 1
6εABCDΨA

3 ΨA
3 ΨA

3 χ̃D
3 and ΨA

4 χ4A. The

integral (5.7) gives the amplitude

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4(ΨA
i + θA

1 + θA
2 Zi −

1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i )

× 1
∏4

1〈i, i + 1〉
(ΨA

1 χ1A)(ΨA′

2 χ2A′)(
1

6
εA′′B′′C′′D′′ΨA′′

3 ΨB′′

3 ΨC′′

3 χ̃D′′

3 )(ΨA′′′

4 χ4A′′′)

=
2ig2

∏4
1〈i, i + 1〉

{
χ1AMAA′

χ2A′χ̃3A′′
χ4A′′

(
Z1Z2(Z1 − Z2) + Z3(Z

2
2 − Z2

1 ) + Z2
3(Z1 − Z2)

)

+χ1Aχ̃3Aχ2A′MA′A′′′
χ4A′′′

(
Z1Z4(Z4 − Z1) + Z3(Z

2
1 − Z2

4 ) + Z2
3 (Z4 − Z1)

)

+χ2A′χ̃3A′
χ1AMAA′′′

χ4A′′′

(
Z2Z4(Z4 − Z2) + Z3(Z

2
2 − Z2

4 ) + Z2
3 (Z4 − Z2)

)}

=
2ig2

∏4
1〈i, i + 1〉

{
χ1AMAA′

χ2A′χ̃3A′′
χ4A′′〈1, 2〉〈2, 3〉〈3, 1〉 + χ1Aχ̃3Aχ2A′MA′A′′′

×χ4A′′′〈2, 4〉〈2, 3〉〈3, 4〉 + χ2A′χ̃3A′
χ1AMAA′′′

χ4A′′′〈4, 1〉〈1, 3〉〈3, 4〉
}

, (5.13)

which agrees with (3.6).

5.2.3 AO(M)(+1/2, 0, 0,+1/2)

The external wavefunctions are given by ΨA
1 χ1A, 1

2!Ψ
A
2 ΨB

2 φ2AB , 1
2!Ψ

A
3 ΨB

3 φ3AB and ΨA
1 χ1A.

The amplitude is

2ig2

∫ 4∏

i

d4ΨA
i

∫
d8θA

a

4∏

i=1

δ4(ΨA
i + θA

1 + θA
2 Zi −

1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i )

× 1
∏4

i=1〈i, i + 1〉
(ΨA

1 χ1A)(
1

2!
ΨA′

2 ΨB′

2 φ2A′B′)(
1

2!
ΨA′′

3 ΨB′′

3 φ3A′′B′′)(ΨA′′′

1 χ1A′′′)
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=
ig2

2
∏4

i=1〈i, i + 1〉

{
χ4A′′′MA′′′Aχ1AφBC

3 φ2BC

×
(
Z2

1Z4 − Z1Z
2
4 + Z2Z

2
4 − Z2

2Z4Z1Z
2
3 − Z2

1Z3

)

+2χ4A′′′MA′′′A′
φ3A′B′φB′A

2 χ1A

(
Z2Z

2
4 − Z2

2Z4 + Z2
3Z4 − Z3Z

2
4

)

+2χ4A′′′φA′′′B′

3 φ2B′A′MA′Aχ1A

(
Z2

1Z2 − Z1Z
2
2 + Z1Z

2
3 − Z2

1Z3

)

+2εAB′B′′A′′′
MA′′A′

χ4A′′′χ1AφA′′B′′

3 φ2A′B′

(
Z2Z

2
3 − Z2

2Z3

)}

=
ig2

2
∏4

i=1〈i, i + 1〉

{
χ4A′′′MA′′′Aχ1AφBC

3 φ2BC

(
〈1, 2〉〈2, 3〉〈3, 4〉 + 〈1, 2〉〈3, 4〉〈1, 4〉

)

+2χ4A′′′MA′′′A′
φ3A′B′φB′A

2 χ1A〈2, 3〉〈3, 4〉〈4, 2〉
+2χ4A′′′φA′′′B′

3 φ2B′A′MA′Aχ1A〈1, 2〉〈2, 3〉〈3, 1〉
}

, (5.14)

where the identities (A.15), (A.19) and MA′A′′
φ2A′A′′ = 0 (due to the symmetry of M and

antisymmetry of φ) are used. The result concurs with (3.7).

5.2.4 AO(M)(0, 0, 0)

Finally, we study the simple but instructive case: 3-scalar amplitude, i.e., AO(M)(0, 0, 0).

For the amplitudes of 3 massless particles, the momentum conservation implies that pi

are collinear. Angular momentum conservation further forces the amplitude to vanish for

3-gluon scattering. For 3-scalar scattering, this is not the case and in fact this is the only

nonvanishing 3-particle extended MHV of O(M). The amplitude can be obtained as well

from the integral in super-twistor space [by a formula similar to (5.7) but with only 3

external functions and the prefactor 2g2 replaced by g/2]. It is

ig

2

∫ 3∏

i

d4ΨA
i

∫
d8θA

a

3∏

i=1

δ4(ΨA
i + θA

1 + θA
2 Zi −

1

6
MABεBCDEθC

2 θD
2 θE

2 Z2
i )

× 1
∏3

i=1〈i, i + 1〉

(
1

2!
ΨA

1 ΨB
1 φ1AB

)(
1

2!
ΨA′

2 ΨB′

2 φ2A′B′

)(
1

2!
ΨA′′

3 ΨB′′

3 φ3A′′B′′

)

=
ig

2
∏3

i=1〈i, i + 1〉

{
Z2

1Z2(M
AA′

φ1ABφ2A′B′φBB′

3 ) + Z2
1Z3(M

AA′
φ1ABφ3A′B′φBB′

2 )

+Z2
2Z3(M

AA′
φ2ABφ3A′B′φBB′

1 ) + Z2
2Z1(M

AA′
φ2ABφ1A′B′φBB′

3 )

+Z2
3Z1(M

AA′
φ3ABφ1A′B′φBB′

2 ) + Z2
3Z2(M

AA′
φ3ABφ2A′B′φBB′

1 )
}

=
ig(MAA′

φ1ABφ2A′B′φBB′

3 )

2
∏3

i=1〈i, i + 1〉
{
Z2

1Z2 − Z2
1Z3 + Z2

2Z3 − Z2
2Z1 + Z2

3Z1 − Z2
3Z2

}

= − ig

2

(
MAA′

φ1ABφ2A′B′φBB′

3

)
, (5.15)

and we used the identities (A.17) and MABφiAB = 0.

This result agrees with the tree-level Feynman diagram calculation. At tree level, we

have only one diagram as in figure 4, where the Feynman rule for the vertex together
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with ϕI , ϕJ and ϕK for the external legs trivially yields the same result. This confirms

again that the mass-deformed 3φ-interaction discussed in section 2.2 and appendix B.6 is

required to have the correct holomorphic structure in super-twistor space in the presence

of the chiral mass deformation.

6. N = 1 Supersymmetry

The chiral-mass deformation that we studied in section 2-section 5 depends on 10 complex

parameters MAB (A,B = 1, . . . , 4) and in general breaks N = 4 supersymmetry completely.

In this section we will study a subset of these deformations – those that preserve N = 1

supersymmetry.

The unperturbed N = 4 super Yang-Mills theory has 8 supersymmetry generators

QαA and Q
A
α̇ . The N = 1 deformation that we will study in this section will preserve the

generators with A = 4 and break those with A = 1, 2, 3. We will use indices i, j, k, · · · =

1, 2, 3 instead of A, when the summation excludes A = 4.

In N = 1 superspace notation the theory contains a vector multiplet V with associated

chiral field strength multiplet Wα and its complex conjugate W
α̇
. In addition there are 3

chiral multiplets Φi and their complex conjugates Φi, where i = 1, 2, 3 is an SU(3) flavor

index. The Lagrangian is given by

2gYM
2L =

∫
d2θd2θ tr

{
Φie

V Φi

}
+

∫
d2θ tr

{
WαW α + εijkΦ

i[Φj,Φk]

}

+

∫
d2θ tr

{
W

α̇
W α̇ + εijkΦi[Φj ,Φk] + M ijΦiΦj

} (6.1)

Note that the chiral mass term only deforms the d2θ integral, and the chiral and anti-chiral

superpotentials are not the complex conjugates of each other! (The situation is reminiscent

of the deformations used in [24].)

Integrating out the auxiliary fields in the superfields, we find that the mass deformation

adds the following extra terms to the potential

∆U =
1

2
tr

{
M ijψα̇iψ

α̇

j + gYMM ijεjklφ
∗
i [φ

k, φl]

}
, (6.2)

where φi is the θ = θ = 0 component of Φi/gYM.

Now let us turn to twistor space CP
3|4. Let us first identify the action of the N = 1

supersymmetry generators on the undeformed twistor space. It is

δλα = 0, δµα̇ = ζα̇Θ4, δΘi = 0 (i = 1, 2, 3), δΘ4 = ζαλα,

where ζ and ζ are the anti-commuting SUSY parameters. Using the holomorphic coordi-

nates on patch U from section 4, we can rewrite the SUSY transformations as

δX = ζ 1̇Ψ
4, δY = ζ 2̇Ψ

4, δZ = 0, δΨi = 0, (i = 1, 2, 3), δΨ4 = ζ1 + ζ2Z.

(6.3)
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The mass-deformed space, given by the transition functions (4.7), which can be written in

our case as

Z ′ =
1

Z
, X ′ =

X

Z
, Y ′ =

Y

Z
, Ψ′i =

1

Z
Ψi +

1

2Z2
M ijεjklΨ

kΨlΨ4, Ψ′4 =
1

Z
Ψ4, (6.4)

is not invariant under the same SUSY transformations (6.3), because they would imply

δΨ′i =
1

2Z2
M ijεjklΨ

kΨl(ζ1 + ζ2Z) =
1

2
M ijεjklΨ

′kΨ′l
(

ζ1 +
1

Z ′ ζ2

)
,

which is ill-defined near Z ′ = 0. We can fix this by modifying the SUSY transformation

(6.3) to

δX = ζ 1̇Ψ
4, δY = ζ 2̇Ψ

4, δZ = 0, δΨi = −1
2ζ2M

ijεjklΨ
kΨl, δΨ4 = ζ1 + ζ2Z. (6.5)

This modified transformation law still satisfies the correct commutation relations, as can be

seen after some algebra and using M ij = M ji. Thus, the deformed twistor space associated

with (6.1) is indeed supersymmetric.

7. Summary and discussion

In this paper we studied a new deformation of twistor string theory; we tested the proposal

that the deformation of twistor space to a space whose complex structure is defined by the

transition functions (6.4) is associated with the deformation of N = 4 super Yang-Mills

theory given by the following Lagrangian:

g2L =
1

4
tr

(
FµνFµν + 2DµφIDµφI − [φI , φJ ]2

)
+

i

2
tr

(
ψγµDµψ + iψΓI [φI , ψ]

)

+
i

2
tr

(
MABψ

α̇
Aψα̇B +

1

4
MIJKφI [φJ , φK]

)
.

Here MAB = MBA is the mass parameter in the representation 10 of the R-symmetry

group SU(4), and MIJK is linearly related to MAB and is given in (A.20).

We calculated tree-level 4-point scattering amplitudes up to order O(M) and we

checked that these amplitudes can be reproduced from an integral over a moduli space

of holomorphic curves in the deformed twistor space, just like the undeformed case.

Among other things, twistor string theory is interesting in that it opens a window

into the nonperturbative aspects of topological string theory on supermanifolds. There has

been a lot of progress recently in understanding the nonperturbative aspects of topological

string theories on ordinary manifolds (see for instance [25]-[31]).

The perturbative open topological string theory with target space CP
3|4 reproduces a

self-dual truncation of N = 4 SYM theory [3]. Extensions to other weighted projective

target spaces were demonstrated in [20]-[23]. It was also suggested in [3] that D1-instantons

in the topological string theory complete the self-dual truncation to a full N = 4 SYM

theory. In fact, the integral (5.1) (copied from [3]) is the one-instanton contribution to the

amplitude. Our results suggest a possible extension of these ideas to a 10-parameter family

of deformations of the target space CP
3|4.
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Other deformations of twistor string theory have been studied in [32][33], and orb-

ifolds of twistor string theory were studied in [34][35]. For example, Kulaxizi and Zou-

bos [32] translated the so-called β-deformations of N = 4 SYM [36]-[40] into a non-

anticommutativity among the fermionic coordinates of super twistor space. It would be

interesting to add a chiral mass term to these deformations and to the orbifold construc-

tions.

Another possible direction for further study is the reduction to D = 3 and lower dimen-

sions. The relevant target space for D = 3 is the weighted projective space WCP
2|1,1,1,1.

This reduction was studied in [1][41][42] and involves minitwistor space [43][44]. Other

reductions of twistor string theory have been recently proposed in [45]. It would be inter-

esting to further study the corresponding reduction of the complex structure deformation

that was described in the present paper.
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A. Notation and useful formulae

A.1 Spinors

Our metric is in Minkowski signature (+,−,−,−). Spinor indices of type (1/2, 0) and

(0, 1/2) are raised and lowered with antisymmetric tensors εαβ , ε
α̇β̇

and their inverses εαβ,

εα̇β̇:

λα = εαβλβ, λα = εαβλβ , λ̃α̇ = ε
α̇β̇

λ̃β̇, λ̃α̇ = εα̇β̇λ̃
β̇
, (A.1)

with

εαβ = ε
α̇β̇

= −εαβ = −εα̇β̇, ε12 = 1. (A.2)

The Lorentz invariants 〈λ1, λ2〉 and [λ̃1, λ̃2] are defined as

〈λ1, λ2〉 = −〈λ2, λ1〉 = εαβλα
1 λβ

2 = λα
1 λ2α = −λ1αλα

2 , (A.3)

and

[λ̃1, λ̃2] = −[λ̃2, λ̃1] = εα̇β̇λ̃1α̇λ̃2β̇
= λ̃1α̇λ̃α̇

2 = −λ̃α̇
1 λ̃2α̇. (A.4)

The vector representation of SO(3, 1) can be represented as the tensor product of two

spinor representation of opposite chirality via:

pαα̇ = σµ
αα̇pµ, pα̇α = σµα̇αpµ, (A.5)

where σµ = (1, ~σ), σµ = (1,−~σ) and ~σ are Pauli matrices.
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Some useful formulae for σ-matrices are listed below:

σµ
αα̇σ

µββ̇
= 2εαβε

α̇β̇
, σα̇α

µ σµ

ββ̇
= 2δα

β δα̇
β̇
, (A.6)

(σµσν + σνσµ)α
β = 2ηµνδα

β, (σµσν + σνσµ)α̇
β̇ = 2ηµνδα̇

β̇
. (A.7)

and

tr σµσν = 2ηµν . (A.8)

The inner product of two vectors gives

WµV µ = ηµνWµVν =
1

2
tr[σµσν ]WµVν =

1

2
Wαα̇V α̇α =

1

2
W α̇αVαα̇. (A.9)

If pµ is lightlike, we can decompose pµ as

pαα̇ = λαλ̃α̇. (A.10)

Furthermore, if qµ is also lightlike (written as qαα̇ = µαµ̃α̇) we have

p · q = −1

2
〈λ, µ〉[λ̃, µ̃]. (A.11)

A.2 SU(4) R-symmetry indices

In N = 4 super Yang-Mills theory, the scalar field φI is real and in the representation 6

of SU(4). Since 6 is the antisymmetric part of 4 × 4 or 4̄ × 4̄, we can exchange φI (I is

an index of 6) for the complex antisymmetric field φAB = −φBA (A,B: indices of 4) or

φAB = −φBA (A,B: indices of 4̄) by

φAB = ΓI
ABφI , φAB = ΓIABφI , (A.12)

where ΓI ’s satisfy

δIJ ΓIABΓJ
CD =

1

2
(δA

CδB
D − δA

DδB
C ), δIJ ΓI

ABΓJ
CD =

1

2
εABCD, (A.13)

and

ΓIAB =
1

2
εABCDΓI

CD, ΓI
AB =

1

2
εABCDΓICD. (A.14)

The reality condition on φ now reads as

φAB =
1

2
εABCDφCD, φAB =

1

2
εABCDφCD, or (φAB)∗ = φAB . (A.15)

It follows that

φI
1φ2I = φI

2φ1I = δIJφ1Iφ2J = φAB
1 φ2AB . (A.16)

Some useful formulae regarding antisymmetry of φAB are listed below:

−1

2
δA
B φ2CDφCD

3 = φAC
2 φ3CB + φAC

3 φ2CB , (A.17)
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−1

2
MABφCD

2 φ3CD = MBC
(
φ2CDφDA

3 + φ3CDφDA
2

)
= MAC

(
φ2CDφDB

3 + φ3CDφDB
2

)
,

(A.18)

and

εAB′B′′A′′′
φA′′B′′

3 φ2A′B′ = −δA
A′′φB′A′′′

3 φ2A′B′ + δA′′′

A′′ φB′A
3 φ2A′B′ − φA′′′A

3 φ2A′A′′ . (A.19)

The mass parameter MAB = MBA is in the irreducible representation 10 of the R-

symmetry group SU(4). Using the double cover SU(4) → SO(6), the representation 10

of SU(4) is induced from an irreducible representation of SO(6) which can be realized as

self-dual anti-symmetric 3-tensors. Explicitly, define

MIJK:=Γ
[I
ABΓJ

CDΓ
K]
EF εABCEMDF =⇒ MIJK = 1

3!εIJKPQRMPQR. (A.20)

Then, the 3-φ coupling from (B.5) can be written as

MABεCDEF tr

{
φAC [φBD, φEF ]

}
= MIJK tr

{
φIφJ φK

}
. (A.21)

We define the su(4)-invariant symbol

ΓIJK
AB :=Γ

[I
DEΓJ

CAΓ
K]
FBεCDEF . (A.22)

It is symmetric in AB and anti-symmetric in IJK and satisfies the self-duality relation

ΓIJK
AB =

1

3!
εIJK

PQRΓPQR
AB . (A.23)

We can then write

MIJK ≡ ΓIJK
AB MAB. (A.24)

B. Feynman rules with chiral mass terms

The Lagrangian of D = 4, N = 4 Yang-Mills theory is given by

L =
1

4g2
tr

(
FµνFµν + 2DµφIDµφI − [φI , φJ ]2

)
+

i

2g2
tr

(
ψγµDµψ + iψΓI [φI , ψ]

)
, (B.1)

where ψ
a

= (ψα, ψα̇) is a Dirac spinor, and we treat ψα and ψα̇ independently.5

In terms of N = 1 superfields the Lagrangian is

g2L =

∫
d2θd2θ tr

{
Φie

V Φi

}
+

∫
d2θ tr

{
WαW α + εijkΦ

i[Φj,Φk]

}

+

∫
d2θ tr

{
W

α̇
W α̇ + εijkΦi[Φj,Φk]

}
,

chiral superfields: Φi = φi +
√

2θψi + θθFi, i = 1, 2, 3

5In N = 4 SYM ψa is actually a Majorana spinor. But in order to get the Feynman rules by analogy

with ordinary QED, we treat the two chiralities independently and in the end identify external fermions as

anti-fermions to take into account that ψ is Majorana. See also appendix B.5.
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vector superfield: V = −θσµθ̄Aµ + iθθθ̄λ̄ − iθ̄θθλ +
1

2
θθθ̄θD, (B.2)

where we identify the component fields of (B.2) with those of (B.1) according to

φA=i,B=j = εijkφ
k, φA=4,B=i = φ∗

i , (B.3)

and

(ψA=i, ψA=i) = (ψi, ψi), (ψA=4, ψA=4) = (λ, λ̄), (B.4)

where φAB = −φBA = ΓIABφI = εABCDφCD/2 (as defined in appendix A.2).

Now, if the chiral mass term M ijΦiΦj is added to (B.2) as discussed in (6.1), N = 4

supersymmetry is broken to N = 1 and the extra term (6.2) leads to

∆U = tr

{
MABψα̇Aψ

α̇
B +

1

4
gMABεCDEF φAC [φBD, φEF ]

}
, (B.5)

which is added to (B.1) (with MA=4,B = MB,A=4 = 0).6

In this paper (unless otherwise mentioned), we considered the general chiral mass term

(i.e., M4A = MA4 could be nonzero) and the mass deformation had the form (B.5) (thus

breaking N = 1 supersymmetry in general). In the following, we first present the Feynman

rules involving the chiral spinor mass term in B.1–B.5 and later in B.6 we present the

Feynman rule for the 3φ-interaction.

B.1 Fermion propagators

When the chiral spinor mass term MABψα̇Aψ
α̇

B is added to (B.1), the Dirac part of the

modified Lagrangian reads (the color group factor is ignored)

LDirac = ψ(iγµ∂µ)ψ−MABψα̇Aψ
α̇

B = (ψα
A, ψα̇A)

(
0 δA

Bpµσµ

αβ̇

δA
B pµσµα̇β −MABδα̇

β̇

)(
ψβB

ψ
β̇
B

)
(B.6)

The spinor propagator is i×(inverse of the middle operator) on the right of (B.6).

With the identities in (A.7), the propagator is given by

i

p2

(
MABδα

β δA
Bpµσµ

αβ̇

δA
Bpµσµα̇β 0

)
=

i

p2

(
MABδα

β δA
Bp

αβ̇

δA
Bpα̇β 0

)
. (B.7)

The corresponding Feynman rules are listed in figure 1.

B.2 Solutions of Dirac equation

With the anti-chiral mass term, the Dirac equation can be read off from (B.6) as

(
0 δA

Bpµσµ

αβ̇

δA
Bpµσµα̇β −MABδα̇

β̇

)(
ψβB

ψ
β̇

B

)
= 0. (B.8)

6The equality of the chiral spinor mass terms in (6.2) and in (B.5) is obvious, while the equality of the

mass-deformed 3φ-interaction terms is less transparent and will be discussed in appendix B.6.
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-α,A β̇,Bp
= ipβ̇α

p2 δA
B -α̇, A β,Bp

= i
pβα̇

p2 δA
B

-α,A β,Bp
= i

δβ
α

p2 MAB -α̇, A β̇,Bp
= 0

Figure 1: The fermion propagators in the presence of a chiral mass term.

The solutions were described in section 2.1. Consider the positive-frequency solutions, i.e.,

ψα(x) = ψα(p)e−ip·x and ψ
α̇
(x) = ψ

α̇
(p)e−ip·x. These ψα(p) and ψ

α̇
(p) obey the equation

of motion (2.1). It is easy to see that p2 = pαα̇pα̇α = 0, and thus the momentum is lightlike

and can be decomposed as (2.2). A basis for the solutions is given by (2.3), which is

invariant under

η′α → ηα + ζλα, %′A → %A − ζMAB%̃B , %̃′B → %̃B (B.9)

for any arbitrary number ζ.

B.3 Helicities and incoming functions

In the presence of an anti-chiral mass term, the helicity and chirality no longer coincide.

However, since the 4-momentum p is still lightlike helicity is Lorentz invariant and can be

used to specify the polarization of incoming and outgoing fermions.

When the lightlike p is written as (2.2) and if we treat %̃A(λ, λ̃), %A(λ, λ̃) and ηα(λ, λ̃)

in the solution (2.3) as continuous functions of λ and λ̃, the helicity operator is given by

ĥ = λα
∂

∂λα
− λ̃α̇

∂

∂λ̃α̇

, (B.10)

which gives eigenvalues −2h when acting on the function ψ(p) if ψ(p)eip·x is a momentum

eigenstate [3]. To find the solutions of positive and negative helicities, we first study some

properties of helicities:

Lemma B.1. ĥf(E) = 0 if f(λ, λ̃) is a function of the energy E only.

Proof. 2E = (p0 + p3) + (p0 − p3) = p11̇ + p22̇ = λ1λ̃1̇ + λ2λ̃2̇. It is easy to show ĥE = 0

and therefore ĥf(E) = 0.

Lemma B.2. ĥηα = −ηα, if ηα is given by7

η1 =
λ∗

2

2E
=

λ̃2̇

2E
, η2 = − λ∗

1

2E
= − λ̃1̇

2E
. (B.11)

7The exact reason for the choice (B.11) will be clear when we study the normalization condition (B.15).

The choice (B.11) satisfies (2.4). Also note that in Minkowski signature we have λ∗
α = ±λ̃α̇ and we choose

the + sign here for positive-frequency solutions (− sign is for negative-frequency solutions).
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Proof. Follows immediately from E = λ1λ̃1̇ + λ2λ̃2̇.

Using (2.3), let’s write the solution as a Dirac spinor8

ψA
a = ψ

α̇

A + ψA
α = λ̃α̇%̃A + λα%A + MABηα%̃B. (B.12)

The eigenvalue problem ĥψa = −2hψa now becomes

ĥψA
a = ĥ

(
λ̃α̇%̃A + λα%A + MABηα%̃B

)

= −λ̃α̇%̃A + λ̃α̇(ĥ%̃A) + λα%A + λα(ĥ%A) + MABηα(ĥ%̃B) − MABηα%̃B (B.13)

by Lemma B.2. Furthermore, by Lemma B.1, if we choose % = 0 and %̃ = %̃(E), we get

the positive-helicity state with h = +1/2; if we choose %̃ = 0 and % = %(E), we get the

negative-helicity state with h = −1/2. Therefore,we have a basis of helicity states:

uA
+a = %̃A(E)λ̃α̇ + MAB%̃B(E)ηα, uA

−a = %A(E)λα. (B.14)

The normalization condition will fix %, %̃ and η. Firstly, we consider the orthogonality

of u+ and u−:

u†A
− uB

+ = (%A∗λ∗
1, %

A∗λ∗
2, 0, 0)




MBC %̃Cη1

MBC %̃Cη2

%̃Bλ̃1̇

%̃Bλ̃2̇


 = %A∗MBC %̃C (λ∗

1η1 + λ∗
2η2) = 0. (B.15)

This together with (2.4) enforces the solution in (B.11).

Secondly, consider

u†A
− uB

− = %A∗%B(λ∗
1, λ

∗
2, 0, 0)




λ1

λ2

0

0


 = %A∗%B

(
λ1λ̃1̇ + λ2λ̃2̇

)
= 2E%A∗%B. (B.16)

To have the correct normalization condition, namely u†A
− uB

− = 2EδAB , %A’s have to satisfy

%A∗%B = δAB . (B.17)

Finally, we compute

u†A
+ uB

+ =
(
(MAC %̃C η1)

∗, (MAC %̃C η2)
∗, (%̃Aλ̃1̇)∗, (%̃Aλ̃2̇)∗

)



MBD %̃Dη1

MBD %̃Dη2

%̃Bλ̃1̇

%̃Bλ̃2̇




= (MAC %̃C)∗ MBD%̃D

(
|η1|2 + |η2|2

)
+ %̃∗A%̃B

(
λ̃1̇λ1 + λ̃2̇λ2

)

8The Dirac spinor ψA
a = ψ

α̇

A + ψA
α is a shorthand for ψA

a =

 
0

ψ
α̇

A

!
+

 
ψA

α

0

!
=

 
ψA

α

ψ
α̇

A

!
.
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= 2E

(
(MAC %̃C)∗ MBD %̃D

4E2
+ %̃∗A%̃B

)
(B.18)

by (B.11). To have u†A
+ uB

+ = 2EδAB , we have to set

(MAC %̃C)∗ MBD %̃D

4E2
+ %̃∗A%̃B = δAB . (B.19)

This in general is not possible. The failure to orthogonalize the + helicity part is due to

the fact that the Hamiltonian is not Hermitian (CPT is violated). Nevertheless, for an

arbitrarily given %̃A(E) and %A(E), uA
+a = %̃Aλ̃α̇ + MAB %̃Bηα can always be normalized

and used for incoming states.

To summarize, the basis of normalized helicity states is:

uA
+a(p) = %̃Aλ̃α̇ + MAB %̃Bηα, uA

−a(p) = %Aλα, (B.20)

Following the recipe of field theory, in momentum space, we use u±(p) for the incoming

fermion state functions with ±1/2 helicities.9

B.4 Outgoing functions

To find the outgoing states, we cannot just take the Dirac conjugate (i.e., ūaA
± ) of (B.20)

as in ordinary field theory, because CPT is no longer invariant. Instead, we should restore

CPT symmetry by adding the anti-chiral mass term MAB = (MAB)∗ and get the new

solution uaA
± and its Dirac conjugate ūaA

± . In the end, we take MAB → 0 (formally keeping

MAB fixed) and ūaA
± in this limit will be the outgoing states for our theory with only a

chiral mass term.

With both chiral and anti-chiral masses, the momentum is no longer lightlike. However,

we can take the relativistic limit (p À M) and still decompose p = λλ̃. At the order O(M),

the helicity is still well-defined, and repeating the calculation above leads to

uA
+a(p) ≈ %̃Aλ̃α̇ + MAB %̃Bηα =

(
MAB %̃Bηα

%̃Aλ̃α̇

)
,

uA
−a(p) ≈ %Aλα + MAB%B η̃α̇ =

(
%Aλα

MAB%B η̃α̇

)
, (B.21)

where λαηα = λ̃α̇η̃α̇ = 1. This gives the Dirac conjugate:

ūaA
+ (p) ≈ %Aλα − MAB%B η̃α̇ =

(
%Aλα, −MAB%B η̃α̇

)
,

ūaA
− (p) ≈ −MAB%̃Bηα + %̃Aλ̃α̇ =

(
−MAB%̃Bηα, %̃Aλ̃α̇

)
, (B.22)

9When studying the holomorphic structure of scattering amplitudes connected to twistor string theory,

we relax the conditions (B.11), (B.17) and (B.19). Instead, we use the freedom (B.9) to set ηα to ηα = (1, 0)

while scaling λα to (1, Z = λ2/λ1).
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- t
+ αp

incoming
= MAB %̃Bηα

- t
+ α̇p

incoming
= %̃Aλ̃α̇

- t
− αp

incoming
= %Aλα

- t
− α̇p

incoming
= 0

¾ t
+ αp

outgoing
= %Aλα ¾ t

+ α̇p

outgoing
= 0

¾ t
− αp

outgoing
= −MAB %̃Bηα ¾ t

− α̇p

outgoing
= %̃Aλ̃α̇

Figure 2: The Feynman rules for external fermions.

by the identities MAB∗
= MAB, (%̃A)∗ = %A and (ηα)∗ = −η̃α̇.10 Setting MAB = 0, we get

the outgoing state functions:

ūaA
+ (p) = %Aλα, ūaA

− (p) = −MAB%̃Bηα + %̃Aλ̃α̇. (B.23)

Equivalently, (B.20) and (B.23) give the Feynman rules for external fermions depicted in

figure 2.

B.5 Negative-frequency solutions

Similarly, we can solve for the negative-frequency solutions: ψ(x) = v(p)eip·x. Repeating

the calculation above, we find a basis of normalized helicity states for anti-fermions:11

vA
+(p) = %̃Aλ̃α̇ − MAB %̃Bηα, vA

−(p) = %Aλα. (B.24)

To compute v̄±(p), we follow the method discussed after (B.23). For negative-frequency

solutions, however, we have (λα)∗ = −λ̃α̇ and accordingly we should choose (%̃A)∗ = %A

and (ηα)∗ = η̃α̇ (contrary to the positive-frequency case). This leads to

v̄A
+(p) = −%Aλα, v̄A

−(p) = −%̃Aλ̃α̇ − MAB %̃Bηα. (B.25)

10In Minkowski signature, we have (λα)∗ = ±λ̃α̇ and we choose the + sign here for positive frequency

solutions. In order to satisfy λαηα = λ̃α̇η̃α̇ = 1, we have to choose (ηα)∗ = −η̃α̇ correspondingly with an

extra minus sign.
11In fact, since CPT is violated, “anti-fermion” is not an appropriate term to describe the negative-

frequency solution. Nevertheless, we use this name anyway for convenience.
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¾ t
+ α

p
-

incoming
= −%Aλα ¾ t

+ α̇
p
-

incoming
= 0

¾ t
− α

p
-

incoming
= −MAB %̃Bηα ¾ t

− α̇
p
-

incoming
= −%̃Aλ̃α̇

- t
+ α

p
¾

outgoing
= −MAB %̃Bηα

- t
+ α̇

p
¾

outgoing
= %̃Aλ̃α̇

- t
− α

p
¾

outgoing
= %Aλα

- t
− α̇

p
¾

outgoing
= 0

Figure 3: The Feynman rules for external anti-fermions.

In momentum space v̄±(p) is used for the incoming anti-fermions with ±1/2 helicities and

v±(p) for the outgoing anti-fermions with ±1/2 helicities. The corresponding Feynman

rules for external anti-fermions are depicted in figure 3.

Notice that since ψ
a

= (ψα, ψα̇) is Majorana, the anti-fermions with adjoint color Ti

and helicity ± are identical to the fermions with T̄i and helicity ∓. We can treat any

external fermionic legs as either “fermions” or “anti-fermions.” The Feynman rules in

figure 2 and figure 3 turn out to give the same resulting amplitude regardless of which way

we choose, as long as all the directions of the arrows are consistent with the vertex rules

depicted in figure 6.

B.6 Mass-deformed 3φ-interaction

We first study the case that MAB is restricted to M ij (i.e. MA=4,B = MB,A=4 = 0). With

the field identification (B.3), the mass-deformed 3φ-interaction term in (6.2) is given by

M ijεjkl φ
∗
i [φ

k, φl] =
1

4
M ijεjkl φ4i εkmnεlpq [φmn, φpq] =

1

2
M ijεklm φ4i[φjk, φlm]. (B.26)

On the other hand, with MAB → M ij, the 3φ-interaction term in (B.5) reduces to

tr
{
MABεCDEF φAC [φBD, φEF ]

}

= tr
{
M ijε4klm φi4[φjk, φlm] + M ijεk4lm φik[φj4, φlm] + · · ·

}

= 2 tr
{
M ijεklm φ4i[φjk, φlm]

}
. (B.27)
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¢¢
¢¢

¢¢
AA

AA
AA

I

K

= −i1
4 g MIJK = −i1

2 g MAB ΓI
ACΓJ

BDΓKCD

J

Figure 4: Feynman rules for 3-scalar vertices (planar part only and the algebraic factor for the

color group ignored). Here, I, J and K are SU(4) R-symmetry indices in the representation 6.

(I,J ,K) are in the counterclockwise order on the page, since for the planar diagram we use the

convention that the color group factor is the trace of adjoint matrices in counterclockwise order.

Comparing (B.26) with (B.27), we conclude that the 3φ-interaction term in (6.2) equals

that in (B.5) when MAB → M ij .

For general MAB , we then have the 3φ-interaction in the Lagrangian:

g

4
tr

{
MABεCDEF φAC [φBD, φEF ]

}
=

g

4
tr

{
MABεCDEF φBD[φEF , φAC ]

}
= · · ·

=
g

2
MABΓI

ACΓJ
BDΓKCD tr {φI [φJ , φK]} =

g

2
MABΓK

ACΓI
BDΓJCD tr {φI [φJ , φK]} = · · ·

=
g

4
MABΓ

[I
ACΓJ

BDΓ
K]
EF εCDEF tr {φI [φJ , φK]} =

g

4
MIJK tr {φI [φJ , φK]} (B.28)

where “· · · ” means cyclic permutation of indices. The planar part of the corresponding

Feynman rule (3-scalar vertex) is depicted in figure 4.

B.7 Other Feynman rules

The Feynman rules involving the gluons do not change with the (anti-)chiral mass term.

For our purpose, instead of arbitrary εµ, we use helicity to describe the polarization. To

get a positive (negative) helicity polarization vector, we set

εµ,+ → ε̃αα̇ =
ξαλ̃α̇

〈ξ, λ〉 , εµ,− → εαα̇ =
λαξ̃α̇

[λ̃, ξ̃]
,

ε∗µ,+ → εαα̇ =
λαξ̃α̇

[λ̃, ξ̃]
, ε∗µ,− → ε̃αα̇ =

ξαλ̃α̇

〈ξ, λ〉 , (B.29)

where ξ(ξ̃) is arbitrary but not a multiple of λ(λ̃) (See [3]). Feynman rules for external

gluons are shown in figure 5.

All other Feynman rules are exactly the same as those in the massless theory. In

particular, we list the fermion-gluon vertices in figure 6, fermion-scalar vertices in figure 7

and scalar-gluon vertex in figure 8.
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= εµ,+ → ε̃αα̇ = ξαλ̃α̇

〈ξ,λ〉
t

−
p
-

incoming
= εµ,− → εαα̇ = λαξ̃α̇

[λ̃,ξ̃]

t
+

p
¾

outgoing
= ε∗µ,+ → εαα̇ = λα ξ̃α̇

[λ̃,ξ̃]

t
−

p
¾

outgoing
= ε∗µ,− → ε̃αα̇ = ξαλ̃α̇

〈ξ,λ〉

Figure 5: The Feynman rules for external gluons.

¢
¢̧
¢
¢
A

AK
A

A

α,A

β̇,B

µ = ig σµβ̇αδA
B

¢
¢̧
¢
¢
A

AK
A

A

α̇, A

β,B

µ = ig σµ
βα̇δA

B

Figure 6: Feynman rules for fermion-gluon vertices. Here, A and B are SU(4) R-symmetry indices

in the 4 or 4̄ representation. The algebraic factor for the color group is ignored.

¢
¢̧
¢
¢
A

AK
A

A

α,A

β,B

I = 2ig ΓI
BAδα

β

¢
¢̧
¢
¢
A

AK
A

A

α̇, A

β̇,B

I = 2ig ΓIBAδα̇
β̇

Figure 7: Feynman rules for fermion-scalar vertices. Here, A and B are SU(4) R-symmetry indices

in the 4 or 4̄ representation and I is the index in 6 representation. The algebraic factor for the

color group is ignored.

C. Detailed computation for Feynman diagrams

In this section, we present the calculation of the tree-level planar Feynman diagrams in

detail for the scattering amplitudes presented in section 3. Some techniques used here can

be found in [46].
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¢¢
¢¢̧

¢¢
AA

AAK
AA

I

J

p1

p2

= i1
2 g (p1 + p2)

µδIJ
µ

Figure 8: Feynman rule for the scalar-gluon vertex. Here, I and J are SU(4) R-symmetry indices

in the 6 representation; p1 and p2 represent the physical momenta if the corresponding dashed line

happens to be an external leg. The algebraic factor for the color group is ignored.

(a)

p2,+

p3,+

p1,+

p4,+
(b) (c)

Figure 9: Planar Feynman diagrams that contribute to the MHV amplitude

AO(M0)(+1, +1,−1,−1). In order to directly apply the Feynman rules as in appendix B, in

the figures we are not using the convention that all external legs are incoming (instead, all depicted

momenta and helicities are physical).

C.1 MHV amplitudes (extended MHV at O(M0))

In this subsection, we calculate MHV diagrams without mass contribution.

C.1.1 AO(M0)(+1,+1,−1,−1)

This is a 4-gluon scattering amplitude. The Feynman diagrams are shown in figure 9.

Accordingly, the amplitude of 4 gluons are the same as that without the mass term, which

is given by (See, e.g., [9])

AO(M0)(+1,+1,−1,−1) =
ig2

2

〈3, 4〉4
∏4

i=1〈i, i + 1〉
. (C.1)

C.1.2 AO(M0)(+1/2,+1,−1,−1/2)

This is a 2-gluon and 2-fermion scattering amplitude. The Feynman rules give two contri-

butions listed in figure 10:

Aa = ε∗3 ν+%B
4 λβ

4

(
igσν

ββ̇

) [
i(p1 + p2)

β̇αδA
B

(p1 + p2)2

]
(
igσµ

αα̇

)
%̃1Aλ̃α̇

1 ε2 µ+. (C.2)
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α̇
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β̇

β
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+, p3 (b)

+
¢
¢
¢̧
¢
¢
¢
A

A
AK

A
A

A+

α̇

α

+

+

Figure 10: Planar Feynman diagrams for the MHV amplitude AO(M0)(+1/2, +1,−1,−1/2). Wavy

lines are gluons and solid lines are fermions. Time is in the vertical upward direction.

Here, ε2 ν+ and ε∗3 ν+ are gluon polarization vectors for the particles with momenta p2 and

p3, respectively. σν
ββ̇

are Pauli matrices. By the rules in (B.29) and in figure 5, we have

εµ+(p2)σ
µ
αα̇ =

ξ2αλ̃2α̇

〈ξ2, 2〉
, ε∗ν+(p3)σ

ν
ββ̇

=
λ3β ξ̃3β̇

[3, ξ̃3]
, (C.3)

where ξ2 and ξ3 are arbitrary spinors.

Aa =
ig2%A

4 %̃1A

〈1, 2〉[1, 2][3, ξ̃3 ]〈ξ2, λ2〉
λβ

4λ3β ξ̃3β̇

(
λ̃β̇

1λα
1 + λ̃β̇

2λα
2

)
ξ2αλ̃2α̇λ̃α̇

1

=
ig2%A

4 %̃1A

〈1, 2〉[3, ξ̃3 ]〈ξ2, λ2〉
〈3, 4〉

(
[ξ̃3, 1]〈1, ξ2〉 + [ξ̃3, 2]〈2, ξ2〉

)
. (C.4)

Gauge-fixing the external gluon polarizations by taking ξ2 = λ3 and ξ̃3 = λ̃2, we get12

Aa → ig2%A
4 %̃1A

〈3, 4〉〈1, 3〉[2, 1]
〈1, 2〉〈2, 3〉[2, 3] = −ig2%A

4 %̃1A
〈3, 4〉3〈1, 3〉

∏4
i=1〈i, i + 1〉

, (C.5)

where we have used the identity
[2, 1]

[2, 3]
=

〈4, 3〉
〈4, 1〉 , (C.6)

which follows from momentum conservation,
∑2

i=1 λα
i λ̃α̇

i =
∑4

i=3 λα
i λ̃α̇

i .

The diagram of figure 10b gives

Ab = ε∗3 ν+(ig) [ηµν(p2 + p3)
% + ην%(p2 − 2p3)

µ + ηρµ(p3 − 2p2)
ν ] ε2 µ+

×
[
i

ησρ

(p2 − p3)2

]
%B
4 λα

4

(
igσσ

αα̇δA
B

)
%̃1Aλ̃α̇

1 , (C.7)

where pµ
2 ε2µ+ = ε∗3ν+pν

3 = 0 and ηµνε∗3ν+ε2µ+ can be expressed again in the form of figure 5

with the help of the identity (A.9).

It follows that

Ab =
−ig2%A

4 %̃1A

2〈2, 3〉[2, 3][3, ξ̃3 ]〈ξ2, 2〉
λα

4 λ̃α̇
1

12Henceforth, an arrow → represents a particular gauge choice.
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Figure 11: Planar Feynman diagrams for AO(M0)(+1/2, +1/2,−1/2,−1/2). In (b), the helicities

for the 1st and 4th particles are flipped since we treat them as anti-fermions.

×
{
ξ̃β̇
3 λβ

3 λ̃2β̇
ξ2β(p2 + p3)αα̇ − 2ξ̃3α̇λ3αλ̃2β̇

ξ2βpβ̇β
3 − 2ξ̃β̇

3 λβ
3 ξ2αλ̃2α̇p2β̇β

}

=
−ig2%A

4 %̃1A

2〈2, 3〉[2, 3][3, ξ̃3 ]〈ξ2, 2〉

{
〈4, 2〉[2, 1]〈3, ξ2〉[2, ξ̃3] + 〈4, 3〉[3, 1]〈3, ξ2〉[2, ξ̃3]

−2〈4, 3〉[ξ̃3, 1][2, 3]〈3, ξ2〉 − 2〈4, ξ2〉〈3, 2〉[2, 1][2, ξ̃3 ]
}

→ 0 (C.8)

in the gauge ξ2 = λ3 and ξ̃3 = λ̃2.

Therefore,

AO(M0)(+1/2,+1,−1,−1/2) = Aa + Ab = ig2%A
4 %̃1A

〈3, 4〉3〈1, 3〉
∏4

i=1〈i, i + 1〉
. (C.9)

C.1.3 AO(M0)(+1/2,+1/2,−1/2,−1/2)

This is a 4-fermion scattering amplitude. The Feynman diagram in figure 11(a) gives

Aa = (%D
4 λα

4 )(%̃1Aλ̃α̇
1 )

(
igσµ

αα̇δA
D

) [ −iηµν

(p1 − p4)2

](
igσν

ββ̇
δB

C

)
(%C

3 λβ
3 )(%̃2B λ̃β̇

2 )

= 2ig2%A
4 %̃1A%B

3 %̃2B
〈3, 4〉[1, 2]
〈1, 4〉[1, 4] = 2ig2%A

4 %̃1A%B
3 %̃2B

〈3, 4〉3〈1, 2〉
∏4

i=1〈i, i + 1〉
(C.10)

by the identity (A.6).

Since the anti-fermions with adjoint color Ti and helicity ± are identical to the fermions

with T̄i and helicity ∓, we should consider the s-channel as shown on figure 11(b), which

gives

Ab = (%D
4 λ4δ)(%

C
3 λγ

3)
(
2igΓJ

CDδδ
γ

) [ −iδIJ
(p1 + p2)2

] (
2igΓIABδ

β̇
α̇
)

(−%̃1Aλ̃1α̇)(%̃2Bλ̃β̇
2 )

= −2ig2(%A
4 %̃1A%B

3 %̃2B − %A
3 %̃1A%B

4 %̃2B)
〈3, 4〉
〈1, 2〉

= −2ig2(%A
4 %̃1A%B

3 %̃2B − %A
3 %̃1A%B

4 %̃2B)
〈3, 4〉2〈2, 3〉〈4, 1〉
∏4

i=1〈i, i + 1〉
(C.11)
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Figure 12: Planar Feynman diagram for AO(M0)(+1/2, 0, 0,−1/2). The dashed lines are scalars.

by the identity (A.13).

Thus,

AO(M0)(+1/2,+1/2,−1/2,−1/2) = Aa + Ab

= − 2ig2〈3, 4〉2
∏4

i=1〈i, i + 1〉
{
%A
4 %̃1A%B

3 %̃2B (〈2, 3〉〈4, 1〉 − 〈3, 4〉〈1, 2〉) − %A
3 %̃1A%B

4 %̃2B〈2, 3〉〈4, 1〉
}

−→ 2ig2〈3, 4〉2
∏4

i=1〈i, i + 1〉
{
%A
4 %̃1A%̃2B%B

3 〈1, 3〉〈2, 4〉 + %A
3 %̃1A%̃2B%B

4 〈2, 3〉〈4, 1〉
}

, (C.12)

where in the last line we scale (λ1
i , λ

2
i ) = (1, Zi) and thus 〈i, j〉 = Zj − Zi.

C.1.4 AO(M0)(+1/2, 0, 0,−1/2)

The Feynman diagram in figure 12(a) gives:

Aa = (%B
4 λα

4 )(%̃1Aλ̃α̇
1 )

(
ig σµ

αα̇δA
B

) [ −iηµν

(p1 − p4)2

](
ig

2
(p2 + p3)

νδIJ
)

ϕ2Iϕ3J

= −ig2%A
4 %̃1AϕI

2ϕ3I
〈4, 2〉[1, 2] + 〈4, 3〉[1, 3]

2〈1, 4〉[1, 4]

= ig2%A
4 %̃1AϕBC

2 ϕ3BC
〈1, 2〉〈2, 4〉〈3, 4〉2

∏4
i=1〈i, i + 1〉

, (C.13)

where ϕ3J and ϕ2I are used for the external scalar particles and (A.16) is used.

figure 12(b) gives:

Ab = ϕ3J %B
4 λγ

4

(
2igΓJ

BDδβ
γ

) [
i(p1 + p2)ββ̇δC

D

(p1 + p2)2

](
2igΓICAδα̇

β̇
)

%̃1Aλ̃α̇
1 ϕ2I

= 2ig2%B
4 %̃1AϕCA

2 ϕ3BC
〈4, 1〉[1, 1] + 〈4, 2〉[2, 1]

〈1, 2〉[1, 2]

= 2ig2%B
4 %̃1AϕCA

2 ϕ3BC
〈2, 3〉〈3, 4〉〈4, 1〉〈2, 4〉

∏4
i=1〈i, i + 1〉

. (C.14)

Altogether,

AO(M0)(+1/2, 0, 0,−1/2) = Aa + Ab
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Figure 13: Planar Feynman diagrams with two external fermions and two external gluons corre-

sponding to the extended MHV amplitude AO(M)(+1/2, +1,−1, +1/2).

=
2ig2〈3, 4〉〈2, 4〉
∏4

i=1〈i, i + 1〉

{1

2
%A
4 %̃1AϕBC

2 ϕ3BC 〈1, 2〉〈3, 4〉 + %B
4 %̃1AϕCA

2 ϕ3BC 〈2, 3〉〈4, 1〉
}

.

(C.15)

C.2 Extended MHV amplitudes at O(M)

In this subsection we will calculate the extended MHV diagrams with the contribution of

the mass MAB up to the first order.

C.2.1 AO(M)(+1/2,+1,−1,+1/2)

The Feynman diagrams are listed in figure 13:

Aa = ε∗3ν+%̃4Bλ̃4β̇

(
igσνβ̇β

)[
i(p1 + p2)βα̇ δA

B

(p1 + p2)2

]
(
igσµα̇α

)
MAC %̃1Cη1αε2µ+

=
ig2MAB%̃1A%̃4B

〈1, 2〉[1, 2][3, ξ̃3 ]〈ξ2, 2〉
λ̃4β̇

ξ̃β̇
3 λβ

3

[
λ1βλ̃1α̇ + λ2βλ̃2α̇

]
λ̃α̇

2 ξα
2 η1α

= ig2MAB%̃1A%̃4B
[4, ξ̃3]〈3, 1〉〈ξ2, η1〉
〈1, 2〉[3, ξ̃3]〈ξ2, 2〉

→ ig2MAB%̃1A%̃4B
[4, 2]〈3, 1〉〈3, η1〉
〈1, 2〉[3, 2]〈3, 2〉

= ig2MAB%̃1A%̃4B
〈3, 1〉〈3, 4〉 {〈3, 1〉〈3, η1〉}∏4

i=1〈i, i + 1〉
, (C.16)

in the gauge ξ2 = λ2 and ξ̃3 = λ̃3.
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Similarly, we have

Ab = ε∗3ν+(−MBC %̃4Cηβ
4 )

(
igσν

ββ̇

) [
i(p1 + p2)

β̇α δA
B

(p1 + p2)2

]
(
igσµ

αα̇

)
˜ρ1Aλ̃α̇

1 ε2µ+

= − ig2MAB %̃1A%̃4B

〈1, 2〉[1, 2][3, ξ̃3 ]〈ξ2, 2〉
ηβ
4 λ3β ξ̃3β̇

[
λ̃β̇

1λα
1 + λ̃β̇

2λα
2

]
ξ2αλ̃2α̇λ̃α̇

1

= −ig2MAB %̃1A%̃4B
〈3, η4〉[ξ̃3, 1]〈1, ξ2〉
〈1, 2〉[3, ξ̃3]〈ξ2, 2〉

→ −ig2MAB %̃1A%̃4B
〈3, η4〉[1, 2]〈1, 3〉
〈1, 2〉[3, 2]〈2, 3〉

= −ig2MAB %̃1A%̃4B
〈3, 1〉〈3, 4〉 {〈3, 4〉〈3, η4〉}∏4

i=1〈i, i + 1〉
(C.17)

in the same gauge.

Meanwhile,

Ac = ε∗3 ν+%̃4Bλ̃4β̇

(
igσνβ̇β

)[
i

MABδβ
α

(p1 + p2)2

]
(igσµαα̇) %̃1Aλ̃α̇

1 ε2 µ+

=
ig2MAB %̃1A%̃4B

〈1, 2〉]1, 2][3, ξ̃3 ]〈ξ2, 2〉
λ̃4β̇

ξ̃β̇
3 λα

3 ξ2αλ̃2α̇λ̃α̇
1 → 0, (C.18)

for λα
3 ξ2α → 〈3, 3〉 = 0.

Furthermore, since the 3-gluon vertices in diagrams (d) and (e) have exactly the same

structure as that in figure 10(b), we have the same vanishing result as (C.8):

Ad → 0, Ae → 0, (C.19)

as we are taking the same gauge, ξ2 = λ2 and ξ̃3 = λ̃3.

As a result,

AO(M)(+1/2,+1,−1,+1/2) = Aa + Ab + Ac + Ad + Ae

=
ig2MAB%̃1A%̃4B

2

〈3, 1〉〈3, 4〉 {〈3, 1〉〈3, η1〉 − 〈3, 4〉〈3, η4〉}∏4
i=1〈i, i + 1〉

−→ ig2MAB%̃1A%̃4B

2

〈3, 1〉〈3, 4〉〈4, 1〉
∏4

i=1〈i, i + 1〉
, (C.20)

where in the last line we scale (λ1
i , λ

2
i ) = (1, Zi) and (η1

i , η
2
i ) = (0, 1); accordingly 〈i, j〉 =

−〈j, i〉 = Zj − Zi and 〈i, ηj〉 = −〈ηj, i〉 = 1.13

C.2.2 AO(M)(+1/2,+1/2,−1/2,+1/2)

The Feynman diagrams are listed in figure 14. Figures (a)–(d) are diagrams exchanging a

gluon propagator while (e) and (f) exchange a scalar propagator.

13Henceforth, a long arrow −→ represents the scaling (λ1
i , λ

2
i ) = (1, Zi) and (η1

i , η2
i ) = (0, 1).
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The Feynman rules give us

Aa = (−MDE %̃4Eηδ
4)(%̃1Aλ̃α̇

1 )
(
igσµ

δα̇δA
D

) [ −iηµν

(p1 − p4)2

](
igσν

γβ̇
δB

C

)
(%C

3 λγ
3)(%̃2B λ̃β̇

2 )

= −2ig2(MAD%̃1A%̃4D)(%C
3 %̃2C)

〈3, η4〉[1, 2]
〈1, 4〉[1, 4]

= −2ig2(MAD%̃1A%̃4D)(%C
3 %̃2C)

〈1, 2〉〈3, 4〉 {〈3, 4〉〈3, η4〉}∏4
i=1〈i, i + 1〉

(C.21)

by the identity (A.6).

Ab = (%̃4Dλ̃4δ̇
)(MAE %̃1Eη1α)

(
igσµδ̇αδA

D
)[ −iηµν

(p1 − p4)2

](
igσν

γβ̇
δB

C

)
(%C

3 λγ
3)(%̃2B λ̃β̇

2 )

= −2ig2(MAD %̃1A%̃4D)(%C
3 %̃2C)

〈3, η1〉[2, 4]
〈1, 4〉[1, 4]

= 2ig2(MAD%̃1A%̃4D)(%C
3 %̃2C)

〈1, 2〉〈3, 4〉 {〈3, 1〉〈3, η1〉}∏4
i=1〈i, i + 1〉

(C.22)

by the identity (A.6).

Ac = (%̃4Dλ̃δ̇
4)(%

C
3 λγ

3)
(
igσµ

γδ̇
δD

C

)[ −iηµν

(p1 + p2)2

](
igσνα̇βδB

A
)

(−%̃1Aλ1α̇)(MBF %̃2F η2β)

= 2ig2(MAB %̃1A%̃2B)(%C
3 %̃4C)

〈3, η2〉[1, 4]
〈1, 2〉[1, 2]

= 2ig2(MAB %̃1A%̃2B)(%C
3 %̃4C)

〈2, 3〉2〈η2, 3〉〈4, 1〉∏4
i=1〈i, i + 1〉

, (C.23)

and

Ad = (%̃4Dλ̃δ̇
4)(%

C
3 λγ

3)
(
igσµ

γδ̇
δD

C

)[ −iηµν

(p1 + p2)2

](
igσν

αβ̇
δB

A

)
(−MAE %̃1Eηα

1 )(%̃2Bλ̃β̇
2 )

= 2ig2(MAB %̃1A%̃2B)(%C
3 %̃4C)

〈3, η1〉[2, 4]
〈1, 2〉[1, 2]

= −2ig2(MAB %̃1A%̃2B)(%C
3 %̃4C)

〈2, 3〉〈3, 1〉〈3, η1 〉〈4, 1〉∏4
i=1〈i, i + 1〉

. (C.24)

The Feynman rules in figure 7 give:

Ae = (%̃4Dλ4δ̇
)(%̃1Aλα̇

1 )
(
2igΓIDAδα̇

δ̇
) [ −iδIJ

(p1 − p4)2

](
2igΓJ

CBδβ
γ

)
(%C

3 λγ
3)(MBE %̃2Eη2β)

= −2ig2 〈3, η2〉
〈1, 4〉

(
MAB%̃1A%̃2B%C

3 %̃4C − MBD %̃2B %̃4D%C
3 %̃1C

)
, (C.25)

and

Af = (%C
3 λγ

3)(−MDH %̃4Hη4δ)
(
2igΓI

CDδδ
γ

)[ −iδIJ
(p1+p2)2

](
2igΓJABδβ̇

α̇
)

(−%̃1Aλ̃1α̇)(%̃2B λ̃β̇
2 )

= −2ig2 〈3, η4〉
〈1, 2〉

(
MBD%̃4D %̃2B%C

3 %̃1C − MAD%̃1A%̃4D%C
3 %̃2C

)
(C.26)

by ithe dentity (A.13).
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Figure 14: Planar Feynman diagrams with four external fermions corresponding to the extended

MHV amplitude AO(M)(+1/2, +1/2,−1/2, +1/2).

Altogether, the extended MHV amplitude for the four external fermions is

AO(M)(+1/2,+1/2,−1/2,+1/2) = Aa + · · · + Af

−→ 2ig2

∏4
1〈i, i + 1〉

{
%̃1AMAB%̃2B%C

3 %̃4C〈1, 2〉〈2, 3〉〈3, 1〉

+%̃1A%A
3 %̃2BMBD %̃4D〈2, 4〉〈2, 3〉〈3, 4〉

+%̃2B%B
3 %̃1AMAD%̃4D〈4, 1〉〈1, 3〉〈3, 4〉

}
. (C.27)

C.2.3 AO(M)(+1/2, 0, 0,+1/2)

The relevant Feynman diagrams are given in figure 15. Diagram (e) involves a 3-scalar

vertex, which is due to the presence of the chiral mass term (as discussed in section 6 and

appendix B.6).

The fermion-exchanging diagrams are calculated as usual:

Aa = ϕ3J MBM %̃4Mηβ
4

(
2igΓJ

BC

) [
i(p1 + p2)βα̇δC

D

(p1 + p2)2

] (
2igΓIDA

)
%̃1Aλ̃α̇

1 ϕ2I

= −2ig2%̃4CMCBϕ3BDϕDA
2 %̃1A

〈2, 3〉〈3, 4〉〈4, 1〉〈η4 , 2〉
2
∏4

i=1〈i, i + 1〉

−→ −2ig2%̃4CMCBϕ3BDϕDA
2 %̃1A

〈2, 3〉〈3, 4〉〈4, 1〉
2
∏4

i=1〈i, i + 1〉
, (C.28)
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Figure 15: Planar Feynman diagrams with two external fermions and two external scalars corre-

sponding to the extended MHV amplitude AO(M)(+1/2, 0, 0, +1/2).

and

Ab = ϕ3J %̃4Bλ̃4β̇

(
2igΓJ BC

)
[

i(p1 + p2)
β̇αδD

C

(p1 + p2)2

]
(
2igΓIDA

)
MAD%̃1Dη1α ϕ2I

= −2ig2%̃4BϕBD
3 ϕ2DAMAD%̃1D

〈1, 2〉〈2, 3〉〈4, 1〉〈3, η1〉
2
∏4

i=1〈i, i + 1〉

−→ −2ig2%̃4BϕBD
3 ϕ2DAMAD%̃1D

〈1, 2〉〈2, 3〉〈4, 1〉
2
∏4

i=1〈i, i + 1〉
. (C.29)

The gluon-exchanging diagrams are given by

Ac = ϕ3J %̃4Bλ̃4β̇

(
igσ̄µβ̇αδB

A

)
MAC %̃1Cη1α

[ −iηµν

(p4 − p1)2

](
ig

2
(p2 + p3)

νδIJ
)

ϕ2I

= ig2%̃4BMBC %̃1Cϕ1A′B′ϕA′B′

2

〈1, 2〉〈3, 4〉(〈1, 3〉〈η1 , 2〉 + 〈1, 2〉〈η1, 3〉)
2
∏4

i=1〈i, i + 1〉

−→ −ig2%̃4BMBC %̃1Cϕ1A′B′ϕA′B′

2

〈1, 2〉〈3, 4〉(〈1, 3〉 + 〈1, 2〉)
2
∏4

i=1〈i, i + 1〉
(C.30)

and

Ad = ϕ3J MBD%̃4Dηβ
4

(
igσµ

βα̇δA
B

)
%̃1Aλ̃α̇

1

[ −iηµν

(p4 + p1)2

](
ig

2
(p2 + p3)

νδIJ
)

ϕ2I

= ig2%̃4BMBC %̃1Cϕ1A′B′ϕA′B′

2

〈1, 2〉〈3, 4〉(〈2, 4〉〈3, η4〉 − 〈2, η4〉〈3, 4〉)
2
∏4

i=1〈i, i + 1〉
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−→ −ig2%̃4BMBC %̃1Cϕ1A′B′ϕA′B′

2

〈1, 2〉〈3, 4〉(〈2, 4〉 + 〈3, 4〉)
2
∏4

i=1〈i, i + 1〉
. (C.31)

Finally, the Feynman rule for the 3-scalar vertex as depicted in figure 4 gives

Ae = %̃4Bλ̃4β̇
%̃1Aλ̃α̇

1

(
2igΓLBAδβ̇

α̇

)[ −iδLK
(p1 − p4)2

](
− ig

2
MCDΓK

CEΓI
DF ΓJEF

)
ϕ3J ϕ2I

= −2ig2 %̃1A%̃4B

〈1, 4〉[1, 4] [4, 1]
(
δLKΓLBAΓK

CE

)
MCDϕ2DF ϕEF

3

= −ig2 〈1, 2〉〈2, 3〉〈3, 4〉∏4
i=1〈i, i + 1〉

%̃1A%̃4B

(
MBCϕ2CD ϕAD

3 − MACϕ2CD ϕBD
3

)

= −ig2 〈1, 2〉〈2, 3〉〈3, 4〉∏4
i=1〈i, i + 1〉

{
%̃4CMCBϕ3BDϕDA

2 %̃1A + %̃4BϕBD
3 ϕ2DAMAD%̃1D

+
1

2
%̃4CMCB %̃1BϕB′D′

3 ϕ2D′B′

}
, (C.32)

where the identity (A.18) is used in the last line.

Put all together, we have

AO(M)(+1/2, 0, 0,+1/2) = Aa + Ab + Ac + Ad + Ae

−→ ig2

∏4
i=1〈i, i + 1〉

{
(〈2, 3〉〈3, 4〉〈1, 4〉 + 〈2, 3〉〈3, 4〉〈2, 1〉)%̃4C MCBϕ3BDϕDA

2 %̃1A

+(〈1, 2〉〈2, 3〉〈1, 4〉 + 〈2, 3〉〈3, 4〉〈2, 1〉)%̃4B ϕBD
3 ϕ2DAMAD%̃1D

1

2
(〈1, 2〉〈1, 4〉〈3, 4〉 + 〈2, 3〉〈3, 4〉〈2, 1〉)%̃4B MBC %̃1CϕB′D′

3 ϕ2B′D′

}

=
ig2

∏4
i=1〈i, i + 1〉

{
〈2, 3〉〈3, 4〉〈4, 2〉%̃4C MCBϕ3BDϕDA

2 %̃1A

+〈1, 2〉〈2, 3〉〈3, 1〉%̃4BϕBD
3 ϕ2DAMAD%̃1D (C.33)

1

2
(〈1, 2〉〈2, 3〉〈3, 4〉 + 〈1, 2〉〈1, 4〉〈3, 4〉)%̃4B MBC %̃1CϕB′D′

3 ϕ2B′D′

}
.
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